Skip to main content

Advertisement

Log in

Therapeutic inhibition of breast cancer bone metastasis progression and lung colonization: breaking the vicious cycle by targeting α5β1 integrin

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

At diagnosis, 10 % of breast cancer patients already have locally advanced or metastatic disease; moreover, metastasis eventually develops in at least 40 % of early breast cancer patients. Osteolytic bone colonization occurs in 80–85 % of metastatic breast cancer patients and is thought to be an early step in metastatic progression. Thus, breast cancer displays a strong preference for metastasis to bone, and most metastatic breast cancer patients will experience its complications. Our prior research has shown that the α5β1 integrin fibronectin receptor mediates both metastatic and angiogenic invasion. We invented a targeted peptide inhibitor of activated α5β1, Ac-PHSCN-NH2 (PHSCN), as a validated lead compound to impede both metastatic invasion and neovascularization. Systemic PHSCN monotherapy prevented disease progression for up to 14 months in Phase I clinical trial. Here, we report that the next-generation construct, Ac-PhScN-NH2 (PhScN), which contains D-isomers of histidine (h) and cysteine (c), is greater than 100,000-fold more potent than PHSCN at blocking basement membrane invasion. Moreover, PhScN is also up to 10,000-fold more potent than PHSCN at inhibiting lung extravasation and colonization in athymic mice for both MDA-MB-231 metastatic and SUM149PT inflammatory breast cancer cells. Furthermore, we show that systemic treatment with 50 mg/kg PhScN monotherapy reduces established intratibial MDA-MB-231 bone colony progression by 80 %. Thus, PhScN is a highly potent, well-tolerated inhibitor of both lung colonization and bone colony progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SF:

Serum free

FBS:

Fetal bovine serum

Bio:

Biotin

IC50:

Concentration for 50 % inhibition

pFn:

Plasma fibronectin

DRI:

Dose reduction index

DiI:

1,1′-Dilinoleyl-3,3,3′3′-tetramethylindocarbocyanine perchlorate

MAP:

Multiantigenic peptide

MAb:

Monoclonal antibody

SEM:

Standard error of mean

Me:

Methyl

OAc:

Acetyl

μg:

Microgram

ng:

Nanogram

pg:

Picogram

mw:

Molecular weight

K d :

Dissociation constant

References

  1. Dickson RB, Lippman ME (2001) Cancer of the breast. In: DeVita VT, Hellman S, Rosenberg SA (eds) Cancer: principles & practice of oncology, 6th edn. Lippencott Williams & Wilkins, Philadelphia, pp 1633–1726

    Google Scholar 

  2. Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2(8):584–593. doi:10.1038/nrc867

    Article  CAS  PubMed  Google Scholar 

  3. Husemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E, Forni G, Eils R, Fehm T, Riethmuller G, Klein CA (2008) Systemic spread is an early step in breast cancer. Cancer Cell 13(1):58–68. doi:10.1016/j.ccr.2007.12.003

    Article  PubMed  Google Scholar 

  4. Jia Y, Zeng ZZ, Markwart SM, Rockwood KF, Ignatoski KM, Ethier SP, Livant DL (2004) Integrin fibronectin receptors in matrix metalloproteinase-1-dependent invasion by breast cancer and mammary epithelial cells. Cancer Res 64(23):8674–8681. doi:10.1158/0008-5472.CAN-04-0069

    Article  CAS  PubMed  Google Scholar 

  5. Livant DL, Brabec RK, Pienta KJ, Allen DL, Kurachi K, Markwart S (2000) Upadhyaya A anti-invasive, antitumorigenic, and antimetastatic activities of the PHSCN sequence in prostate carcinoma. Cancer Res 60(2):309–320

    CAS  PubMed  Google Scholar 

  6. Zeng Z-Z, Yao H, Staszewski ED, Rockwood KF, Markwart SM, Fay KS, Spalding AC, Livant DL (2009) (alpha)5(beta)1 integrin ligand PHSRN induces invasion and (alpha)5 mRNA in endothelial cells to stimulate angiogenesis. Transl Oncol 2:8–20

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yao H, Veine D, Fay K, Staszewski E, Zeng Z-Z, Livant D (2011) The PHSCN dendrimer as a more potent inhibitor of human breast cancer cell invasion, extravasation, and lung colony formation. Breast Cancer Res Treat 125:363–375

    Article  CAS  PubMed  Google Scholar 

  8. Yao H, Veine DM, Zeng ZZ, Fay KS, Staszewski ED, Livant DL (2010) Increased potency of the PHSCN dendrimer as an inhibitor of human prostate cancer cell invasion, extravasation, and lung colony formation. Clin Exp Metastasis 27(3):173–184. doi:10.1007/s10585-010-9316-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Veine DM, Yao H, Stafford DR, Fay KS, Livant DL (2014) A D-amino acid containing peptide as a potent, noncovalent inhibitor of alpha5beta1 integrin in human prostate cancer invasion and lung colonization. Clin Exp Metastasis 31:379–393. doi:10.1007/s10585-013-9634-1

    Article  CAS  PubMed  Google Scholar 

  10. Donate F, Parry GC, Shaked Y, Hensley H, Guan X, Beck I, Tel-Tsur Z, Plunkett ML, Manuia M, Shaw DE, Kerbel RS, Mazar AP (2008) Pharmacology of the novel antiangiogenic peptide ATN-161 (Ac-PHSCN-NH2): observation of a U-shaped dose-response curve in several preclinical models of angiogenesis and tumor growth. Clin Cancer Res 14:2137–2144

    Article  CAS  PubMed  Google Scholar 

  11. van Golen KL, Bao L, Brewer GJ, Pienta KJ, Kamradt JM, Livant DL, Merajver SD (2002) Suppression of tumor recurrence and metastasis by a combination of the PHSCN sequence and the antiangiogenic compound tetrathiomolybdate in prostate carcinoma. Neoplasia 4(5):373–379. doi:10.1038/sj.neo.7900258

    Article  PubMed  PubMed Central  Google Scholar 

  12. Khalili P, Arakelian A, Chen G, Plunkett ML, Beck I, Parry GC, Donate F, Shaw DE, Mazar AP, Rabbani SA (2006) A non-RGD-based integrin binding peptide (ATN-161) blocks breast cancer growth and metastasis in vivo. Mol Can Ther 5:2271–2280

    Article  CAS  Google Scholar 

  13. Stoeltzing O, Liu W, Reinmuth N, Fan F, Parry GC, Parikh AA, McCarty MF, Bucana CD, Mazar AP, Ellis LM (2003) Inhibition of integrin alpha5beta1 function with a small peptide (ATN-161) plus continuous 5-FU infusion reduces colorectal liver metastases and improves survival in mice. Int J Cancer 104:496–503

    Article  CAS  PubMed  Google Scholar 

  14. Yao H, Zeng Z-Z, Fay KS, Veine DM, Straszewski ED, Morgan MA, Wilder-Romans K, Williams TM, Spalding AC, Ben-Josef E, Livant DL (2011) Role of alpha5beta1 integrin upregulation in radiation-induced invasion by human pancreatic cancer cells. Transl Oncol 4(5):282–292

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cianfrocca ME, Kimmel KA, Gallo J, Cardoso T, Brown MM, Hudes G, Lewis N, Weiner L, Lam GN, Brown SC, Shaw DE, Mazar AP, Cohen RB (2006) Phase 1 trial of the antiangiogenic peptide ATN-161 (Ac-PHSCN-NH(2)), a beta integrin antagonist, in patients with solid tumours. Br J Cancer 94(11):1621–1626. doi:10.1038/sj.bjc.6603171

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zeng Z-Z, Jia YF, Hahn NJ, Markwart SM, Rockwood KF, Livant DL (2006) Role of focal adhesion kinase and phosphatidylinositol 3′-kinase in integrin fibronectin receptor-mediated, matrix metalloproteinase-1 dependent invasion by metastatic prostate cancer cells. Cancer Res 66(16):8091–8099

    Article  CAS  PubMed  Google Scholar 

  17. Livant DL, Brabec RK, Kurachi K, Allen DL, Wu Y, Andrews P, Ethier SP, Markwart S (2000) The PHSRN sequence induces extracellular matrix invasion and accelerates wound healing in obese diabetic mice. J Clin Invest 105(11):1537–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hulme EC (1992) Centrifugation binding assays. In: Hulme EC (ed) Receptor–ligand interactions: a practical approach. Oxford University Press, Oxford, pp 235–246

    Google Scholar 

  19. Motulsky HJ, Neubig RR. Analyzing binding data. Current protocols in neuroscience/editorial board, Jacqueline N Crawley [et al] 2010; Chapter 7:Unit 7 5. doi:10.1002/0471142301.ns0705s52

  20. Hall CL, Dai J, van Golen KL, Keller ET, Long MW (2006) Type I collagen receptor (alpha 2 beta 1) signaling promotes the growth of human prostate cancer cells within the bone. Cancer Res 66(17):8648–8654. doi:10.1158/0008-5472.CAN-06-1544

    Article  CAS  PubMed  Google Scholar 

  21. Chou TC, Talalay P (1984) Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  CAS  PubMed  Google Scholar 

  22. Aota S, Nomizu M, Yamada KM (1994) The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. J Biol Chem 269(40):24756–24761

    CAS  PubMed  Google Scholar 

  23. Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127(4):679–695. doi:10.1016/j.cell.2006.11.001

    Article  CAS  PubMed  Google Scholar 

  24. Jean C, Gravelle P, Fournie JJ, Laurent G (2011) Influence of stress on extracellular matrix and integrin biology. Oncogene 30(24):2697–2706. doi:10.1038/onc.2011.27

    Article  CAS  PubMed  Google Scholar 

  25. Suva LJ, Winslow GA, Wettenhall RE, Hammonds RG, Moseley JM, Diefenbach-Jagger H, Rodda CP, Kemp BE, Rodriguez H, Chen EY et al (1987) A parathyroid hormone-related protein implicated in malignant hypercalcemia: cloning and expression. Science 237(4817):893–896

    Article  CAS  PubMed  Google Scholar 

  26. Alonso V, de Gortazar AR, Ardura JA, Andrade-Zapata I, Alvarez-Arroyo MV, Esbrit P (2008) Parathyroid hormone-related protein (107–139) increases human osteoblastic cell survival by activation of vascular endothelial growth factor receptor-2. J Cell Physiol 217(3):717–727. doi:10.1002/jcp.21547

    Article  CAS  PubMed  Google Scholar 

  27. Esbrit P, Alvarez-Arroyo MV, De Miguel F, Martin O, Martinez ME, Caramelo C (2000) C-terminal parathyroid hormone-related protein increases vascular endothelial growth factor in human osteoblastic cells. J Am Soc Nephrol 11(6):1085–1092

    CAS  PubMed  Google Scholar 

  28. Isowa S, Shimo T, Ibaragi S, Kurio N, Okui T, Matsubara K, Hassan NM, Kishimoto K, Sasaki A (2010) PTHrP regulates angiogenesis and bone resorption via VEGF expression. Anticancer Res 30(7):2755–2767

    CAS  PubMed  Google Scholar 

  29. Guise TA (1997) Parathyroid hormone-related protein and bone metastases. Cancer 80(8 Suppl):1572–1580

    Article  CAS  PubMed  Google Scholar 

  30. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397(6717):315–323. doi:10.1038/16852

    Article  CAS  PubMed  Google Scholar 

  31. Blair HC, Teitelbaum SL, Ghiselli R, Gluck S (1989) Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 245(4920):855–857

    Article  CAS  PubMed  Google Scholar 

  32. Delaisse JM, Engsig MT, Everts V, del Carmen Ovejero M, Ferreras M, Lund L, Vu TH, Werb Z, Winding B, Lochter A, Karsdal MA, Troen T, Kirkegaard T, Lenhard T, Heegaard AM, Neff L, Baron R, Foged NT (2000) Proteinases in bone resorption: obvious and less obvious roles. Clin Chim Acta 291(2):223–234

    Article  CAS  PubMed  Google Scholar 

  33. Tang X, Zhang Q, Shi S, Yen Y, Li X, Zhang Y, Zhou K, Le AD (2010) Bisphosphonates suppress insulin-like growth factor 1-induced angiogenesis via the HIF-1alpha/VEGF signaling pathways in human breast cancer cells. Int J Cancer 126(1):90–103. doi:10.1002/ijc.24710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Peoples GE, Blotnick S, Takahashi K, Freeman MR, Klagsbrun M, Eberlein TJ (1995) T lymphocytes that infiltrate tumors and atherosclerotic plaques produce heparin-binding epidermal growth factor-like growth factor and basic fibroblast growth factor: a potential pathologic role. Proc Natl Acad Sci USA 92(14):6547–6551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Petersen M, Pardali E, van der Horst G, Cheung H, van den Hoogen C, van der Pluijm G, Ten Dijke P (2010) Smad2 and Smad3 have opposing roles in breast cancer bone metastasis by differentially affecting tumor angiogenesis. Oncogene 29(9):1351–1361. doi:10.1038/onc.2009.426

    Article  CAS  PubMed  Google Scholar 

  36. Winding B, Misander H, Sveigaard C, Therkildsen B, Jakobsen M, Overgaard T, Oursler MJ, Foged NT (2000) Human breast cancer cells induced angiogenesis, recruitment, and activation of osteoclasts in osteolytic metastasis. J Cancer Res Clin Oncol 126(11):631–640

    Article  CAS  PubMed  Google Scholar 

  37. Boire A, Covic L, Agarwal A, Jacques S, Sherifi S, Kuliopulos A (2005) PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120(3):303–313. doi:10.1016/j.cell.2004.12.018

    Article  CAS  PubMed  Google Scholar 

  38. Blackburn JS, Brinckerhoff CE (2008) Matrix metalloproteinase-1 and thrombin differentially activate gene expression in endothelial cells via PAR-1 and promote angiogenesis. Am J Pathol 173(6):1736–1746. doi:10.2353/ajpath.2008.080512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Foley J, Nickerson N, Riese DJ 2nd, Hollenhorst PC, Lorch G, Foley AM (2012) At the crossroads: EGFR and PTHrP signaling in cancer-mediated diseases of bone. Odontology 100(2):109–129. doi:10.1007/s10266-012-0070-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ignatoski KM, Maehama T, Markwart SM, Dixon JE, Livant DL, Ethier SP (2000) ERBB-2 overexpression confers PI 3′ kinase-dependent invasion capacity on human mammary epithelial cells. Br J Cancer 82(3):666–674. doi:10.1054/bjoc.1999.0979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Woods Ignatoski KM, Grewal NK, Markwart S, Livant DL, Ethier SP (2003) p38MAPK induces cell surface alpha4 integrin downregulation to facilitate erbB-2-mediated invasion. Neoplasia 5(2):128–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Van der Velde-Zimmermann D, Verdaasdonk MA, Rademakers LH, De Weger RA, Van den Tweel JG, Joling P (1997) Fibronectin distribution in human bone marrow stroma: matrix assembly and tumor cell adhesion via alpha5 beta1 integrin. Exp Cell Res 230(1):111–120. doi:10.1006/excr.1996.3405

    Article  PubMed  Google Scholar 

  43. Noguchi M, Morioka E, Ohno Y, Noguchi M, Nakano Y, Kosaka T (2013) The changing role of axillary lymph node dissection for breast cancer. Breast Cancer 20(1):41–46. doi:10.1007/s12282-012-0416-4

    Article  PubMed  Google Scholar 

  44. Anderson JA, Grabowska AM, Watson SA (2007) PTHrP increases transcriptional activity of the integrin subunit alpha5. Br J Cancer 96(9):1394–1403. doi:10.1038/sj.bjc.6603720

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Korah R, Boots M, Wieder R (2004) Integrin alpha5beta1 promotes survival of growth-arrested breast cancer cells: an in vitro paradigm for breast cancer dormancy in bone marrow. Cancer Res 64(13):4514–4522. doi:10.1158/0008-5472.CAN-03-385364/13/4514

    Article  CAS  PubMed  Google Scholar 

  46. Stopeck AT, Lipton A, Body JJ, Steger GG, Tonkin K, de Boer RH, Lichinitser M, Fujiwara Y, Yardley DA, Viniegra M, Fan M, Jiang Q, Dansey R, Jun S, Braun A (2010) Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol 28(35):5132–5139. doi:10.1200/JCO.2010.29.7101

    Article  CAS  PubMed  Google Scholar 

  47. Fizazi K, Carducci M, Smith M, Damiao R, Brown J, Karsh L, Milecki P, Shore N, Rader M, Wang H, Jiang Q, Tadros S, Dansey R, Goessl C (2011) Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet 377(9768):813–822. doi:10.1016/S0140-6736(10)62344-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Henry DH, Costa L, Goldwasser F, Hirsh V, Hungria V, Prausova J, Scagliotti GV, Sleeboom H, Spencer A, Vadhan-Raj S, von Moos R, Willenbacher W, Woll PJ, Wang J, Jiang Q, Jun S, Dansey R, Yeh H (2011) Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol 29(9):1125–1132. doi:10.1200/JCO.2010.31.3304

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Steve Kronenberg in the Department of Radiation Oncology, University of Michigan for drawing the bone metastasis model depicted in Scheme 1. We also wish to thank the University of Michigan Office of Technology Transfer for their work on patent 8,940,701: Compounds for, and methods of treating cancer and inhibiting invasion and metastases. The in vitro studies and lung metastasis research described here were supported by a Department of Defense Idea Expansion Award F028579. The bone metastasis research described here was supported by a grant from the Michigan Economic Development Corporation, through the University of Michigan Medical School’s Strategic Research Initiative, U-M MTRAC for Life Sciences.

Authors’ contributions

Hongren Yao performed all of the tissue preparations and confocal microscopic studies necessary for the analysis of the effects of PhScN on lung extravasation and lung colonization. He also performed all of the intratibial injections and tissue preparations, as well as all of the confocal microscopic analysis of bone marrow progression. Donna Veine performed all of the K d determinations, competition binding assays, in vitro invasion assay preparations, data analysis, figure preparation and assisted in manuscript writing. Donna Livant performed all of the in vitro invasion assay data collections, as well as planning and directing the project, and writing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna L. Livant.

Ethics declarations

Conflict of interest

The author, Donna Livant, received salary from the University of Michigan, which owns the patent on her invention, patent 8,940,701: Compounds for, and methods of treating cancer and inhibiting invasion and metastases. The authors, Hongren Yao and Donna Veine declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, H., Veine, D.M. & Livant, D.L. Therapeutic inhibition of breast cancer bone metastasis progression and lung colonization: breaking the vicious cycle by targeting α5β1 integrin. Breast Cancer Res Treat 157, 489–501 (2016). https://doi.org/10.1007/s10549-016-3844-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-016-3844-6

Keywords

Navigation