Skip to main content

Advertisement

Log in

Riluzole mediates anti-tumor properties in breast cancer cells independent of metabotropic glutamate receptor-1

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Riluzole, the only drug approved by the FDA for treating amyotrophic lateral sclerosis, inhibits melanoma proliferation through its inhibitory effect on glutamatergic signaling. We demonstrated that riluzole also inhibits the growth of triple-negative breast cancer (TNBC) and described a role for metabotropic glutamate receptor-1 (GRM1) in regulating TNBC cell growth and progression. However, the role of GRM1 in mediating riluzole’s effects in breast cancer has not been fully elucidated. In this study, we seek to determine how much of riluzole’s action in breast cancer is mediated through GRM1. We investigated anti-tumor properties of riluzole in TNBC and ER+ cells using cell growth, invasion, and soft-agar assays and compared riluzole activity with GRM1 levels. Using Lentiviral vectors expressing GRM1 or shGRM1, these studies were repeated in cells expressing high or low GRM1 levels where the gene was either silenced or overexpressed. Riluzole inhibited proliferation, invasion, and colony formation in both TNBC and ER+ cells. There was a trend between GRM1 expression in TNBC cells and their response to riluzole in both cell proliferation and invasion assays. However, silencing and overexpression studies had no effect on cell sensitivity to riluzole. Our results clearly suggest a GRM1-independent mechanism through which riluzole mediates its effects on breast cancer cells. Understanding the mechanism by which riluzole mediates breast cancer progression will be useful in identifying new therapeutic targets for treating TNBC and in facilitating stratification of patients in clinical trials using riluzole in conjunction with conventional therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2012) Global cancer statistics. CA Cancer J Clin 65(2):87–108. doi:10.3322/caac.21262

    Article  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin. doi:10.3322/caac.21332

    Google Scholar 

  3. Cleere DW (2010) Triple-negative breast cancer: a clinical update. Commun Oncol 7:203–211

    Article  Google Scholar 

  4. Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363(20):1938–1948. doi:10.1056/NEJMra1001389

    Article  CAS  PubMed  Google Scholar 

  5. Narod SA, Dent RA, Foulkes WD (2015) CCR 20th anniversary commentary: triple-negative breast cancer in 2015-still in the ballpark. Clin Cancer Res 21(17):3813–3814. doi:10.1158/1078-0432.CCR-14-3122

    Article  CAS  PubMed  Google Scholar 

  6. Pal SK, Childs BH, Pegram M (2011) Triple negative breast cancer: unmet medical needs. Breast Cancer Res Treat 125(3):627–636. doi:10.1007/s10549-010-1293-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Speyer CL, Smith JS, Banda M, DeVries JA, Mekani T, Gorski DH (2012) Metabotropic glutamate receptor-1: a potential therapeutic target for the treatment of breast cancer. Breast Cancer Res Treat 132(2):565–573. doi:10.1007/s10549-011-1624-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Banda M, Speyer CL, Semma SN, Osuala KO, Kounalakis N, Torres Torres KE, Barnard NJ, Kim HJ, Sloane BF, Miller FR, Goydos JS, Gorski DH (2014) Metabotropic glutamate receptor-1 contributes to progression in triple negative breast cancer. PLoS One 9(1):e81126. doi:10.1371/journal.pone.0081126

    Article  PubMed  PubMed Central  Google Scholar 

  9. Speyer CL, Hachem AH, Assi AA, Johnson JS, DeVries JA, Gorski DH (2014) Metabotropic glutamate receptor-1 as a novel target for the antiangiogenic treatment of breast cancer. PLoS One 9(3):e88830. doi:10.1371/journal.pone.0088830

    Article  PubMed  PubMed Central  Google Scholar 

  10. Teh JL, Shah R, La Cava S, Dolfi SC, Mehta MS, Kongara S, Price S, Ganesan S, Reuhl KR, Hirshfield KM, Karantza V, Chen S (2015) Metabotropic glutamate receptor 1 disrupts mammary acinar architecture and initiates malignant transformation of mammary epithelial cells. Breast Cancer Res Treat 151(1):57–73. doi:10.1007/s10549-015-3365-8

    Article  CAS  PubMed  Google Scholar 

  11. Platt SR (2007) The role of glutamate in central nervous system health and disease—a review. Vet J 173(2):278–286. doi:10.1016/j.tvjl.2005.11.007

    Article  CAS  PubMed  Google Scholar 

  12. Bellingham MC (2011) A review of the neural mechanisms of action and clinical efficiency of riluzole in treating amyotrophic lateral sclerosis: what have we learned in the last decade? CNS Neurosci Ther 17(1):4–31. doi:10.1111/j.1755-5949.2009.00116.x

    Article  CAS  PubMed  Google Scholar 

  13. Endoh T (2004) Characterization of modulatory effects of postsynaptic metabotropic glutamate receptors on calcium currents in rat nucleus tractus solitarius. Brain Res 1024(1–2):212–224. doi:10.1016/j.brainres.2004.07.074

    Article  CAS  PubMed  Google Scholar 

  14. Wokke J (1996) Riluzole. Lancet 348(9030):795–799. doi:10.1016/S0140-6736(96)03181-9

    Article  CAS  PubMed  Google Scholar 

  15. Pollock PM, Cohen-Solal K, Sood R, Namkoong J, Martino JJ, Koganti A, Zhu H, Robbins C, Makalowska I, Shin SS, Marin Y, Roberts KG, Yudt LM, Chen A, Cheng J, Incao A, Pinkett HW, Graham CL, Dunn K, Crespo-Carbone SM, Mackason KR, Ryan KB, Sinsimer D, Goydos J, Reuhl KR, Eckhaus M, Meltzer PS, Pavan WJ, Trent JM, Chen S (2003) Melanoma mouse model implicates metabotropic glutamate signaling in melanocytic neoplasia. Nat Genet 34(1):108–112. doi:10.1038/ng1148

    Article  CAS  PubMed  Google Scholar 

  16. Namkoong J, Shin SS, Lee HJ, Marin YE, Wall BA, Goydos JS, Chen S (2007) Metabotropic glutamate receptor 1 and glutamate signaling in human melanoma. Cancer Res 67(5):2298–2305. doi:10.1158/0008-5472.CAN-06-3665

    Article  CAS  PubMed  Google Scholar 

  17. Le MN, Chan JL, Rosenberg SA, Nabatian AS, Merrigan KT, Cohen-Solal KA, Goydos JS (2010) The glutamate release inhibitor riluzole decreases migration, invasion, and proliferation of melanoma cells. J Invest Dermatol 130(9):2240–2249. doi:10.1038/jid.2010.126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee HJ, Wall BA, Wangari-Talbot J, Shin SS, Rosenberg S, Chan JL, Namkoong J, Goydos JS, Chen S (2011) Glutamatergic pathway targeting in melanoma: single-agent and combinatorial therapies. Clin Cancer Res 17(22):7080–7092. doi:10.1158/1078-0432.CCR-11-0098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wen YY, Li J, Koo J, Shin SS, Lin Y, Jeong BS, Mehnert JM, Chen S, Cohen-Solal K, Goydos JS (2014) Activation of the glutamate receptor GRM1 enhances angiogenic signaling to drive melanoma progression. Cancer Res 74:2499–2509. doi:10.1158/0008-5472.CAN-13-1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rosenberg SA, Niglio SA, Salehomoum N, Chan JL, Jeong BS, Wen Y, Li J, Fukui J, Chen S, Shin SS, Goydos JS (2015) Targeting glutamatergic signaling and the PI3 kinase pathway to halt melanoma progression. Transl Oncol 8(1):1–9. doi:10.1016/j.tranon.2014.11.001

    Article  PubMed  PubMed Central  Google Scholar 

  21. Song JH, Huang CS, Nagata K, Yeh JZ, Narahashi T (1997) Differential action of riluzole on tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels. J Pharmacol Exp Ther 282(2):707–714

    CAS  PubMed  Google Scholar 

  22. Noh KM, Hwang JY, Shin HC, Koh JY (2000) A novel neuroprotective mechanism of riluzole: direct inhibition of protein kinase C. Neurobiol Dis 7(4):375–383. doi:10.1006/nbdi.2000.0297

    Article  CAS  PubMed  Google Scholar 

  23. Choi JS, Ryu JH, Zuo Z, Yang SM, Chang HW, Do SH (2013) Riluzole attenuates excitatory amino acid transporter type 3 activity in Xenopus oocytes via protein kinase C inhibition. Eur J Pharmacol 713(1–3):39–43. doi:10.1016/j.ejphar.2013.04.048

    Article  CAS  PubMed  Google Scholar 

  24. Mehta MS, Dolfi SC, Bronfenbrener R, Bilal E, Chen C, Moore D, Lin Y, Rahim H, Aisner S, Kersellius RD, Teh J, Chen S, Toppmeyer DL, Medina DJ, Ganesan S, Vazquez A, Hirshfield KM (2013) Metabotropic glutamate receptor 1 expression and its polymorphic variants associate with breast cancer phenotypes. PLoS ONE 8(7):e69851. doi:10.1371/journal.pone.0069851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sartor CI, Dziubinski ML, Yu CL, Jove R, Ethier SP (1997) Role of epidermal growth factor receptor and STAT-3 activation in autonomous proliferation of SUM-102PT human breast cancer cells. Cancer Res 57(5):978–987

    CAS  PubMed  Google Scholar 

  26. Tannheimer SL, Rehemtulla A, Ethier SP (2000) Characterization of fibroblast growth factor receptor 2 overexpression in the human breast cancer cell line SUM-52PE. Breast Cancer Res 2(4):311–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aslakson CJ, Miller FR (1992) Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 52(6):1399–1405

    CAS  PubMed  Google Scholar 

  28. Kao J, Salari K, Bocanegra M, Choi YL, Girard L, Gandhi J, Kwei KA, Hernandez-Boussard T, Wang P, Gazdar AF, Minna JD, Pollack JR (2009) Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One 4(7):e6146. doi:10.1371/journal.pone.0006146

    Article  PubMed  PubMed Central  Google Scholar 

  29. Khan AJ, Wall BA, Ahlawat S, Green C, Schiff D, Mehnert JM, Goydos JS, Chen S, Haffty BG (2011) Riluzole enhances ionizing radiation-induced cytotoxicity in human melanoma cells that ectopically express metabotropic glutamate receptor 1 in vitro and in vivo. Clin Cancer Res 17(7):1807–1814. doi:10.1158/1078-0432.CCR-10-1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen S, Zhu H, Wetzel WJ, Philbert MA (1996) Spontaneous melanocytosis in transgenic mice. J Invest Dermatol 106(5):1145–1151

    Article  CAS  PubMed  Google Scholar 

  31. Zhu H, Reuhl K, Botha R, Ryan K, Wei J, Chen S (2000) Development of early melanocytic lesions in transgenic mice predisposed to melanoma. Pigment Cell Res 13(3):158–164

    Article  CAS  PubMed  Google Scholar 

  32. Zhu H, Reuhl K, Zhang X, Botha R, Ryan K, Wei J, Chen S (1998) Development of heritable melanoma in transgenic mice. J Invest Dermatol 110(3):247–252. doi:10.1046/j.1523-1747.1998.00133.x

    Article  CAS  PubMed  Google Scholar 

  33. Shin SS, Namkoong J, Wall BA, Gleason R, Lee HJ, Chen S (2008) Oncogenic activities of metabotropic glutamate receptor 1 (Grm1) in melanocyte transformation. Pigment Cell Melanoma Res 21(3):368–378. doi:10.1111/j.1755-148X.2008.00452.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nelson M, Yang M, Dowle AA, Thomas JR, Brackenbury WJ (2015) The sodium channel-blocking antiepileptic drug phenytoin inhibits breast tumour growth and metastasis. Mol Cancer 14:13. doi:10.1186/s12943-014-0277-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nelson M, Yang M, Millican-Slater R, Brackenbury WJ (2015) Nav1.5 regulates breast tumor growth and metastatic dissemination in vivo. Oncotarget 6(32):32914–32929. doi:10.18632/oncotarget.5441

  36. Debono MW, Le Guern J, Canton T, Doble A, Pradier L (1993) Inhibition by riluzole of electrophysiological responses mediated by rat kainate and NMDA receptors expressed in Xenopus oocytes. Eur J Pharmacol 235(2–3):283–289

    Article  CAS  PubMed  Google Scholar 

  37. Kretschmer BD, Kratzer U, Schmidt WJ (1998) Riluzole, a glutamate release inhibitor, and motor behavior. Naunyn Schmiedebergs Arch Pharmacol 358(2):181–190

    Article  CAS  PubMed  Google Scholar 

  38. Azbill RD, Mu X, Springer JE (2000) Riluzole increases high-affinity glutamate uptake in rat spinal cord synaptosomes. Brain Res 871(2):175–180

    Article  CAS  PubMed  Google Scholar 

  39. Dunlop J, Beal McIlvain H, She Y, Howland DS (2003) Impaired spinal cord glutamate transport capacity and reduced sensitivity to riluzole in a transgenic superoxide dismutase mutant rat model of amyotrophic lateral sclerosis. J Neurosci 23(5):1688–1696

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Stephen Ethier for kindly providing us with his SUM cell lines and Dr. Fred Miller for kindly providing us with his 4T1 cell line. We are also thankful to Dr. Manohar Ratnam for all his help, insight, and advice throughout this study. This study was supported by a CDMRP BCRP, Breakthrough Award (Level 1) funded by the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Gorski.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Speyer, C.L., Nassar, M.A., Hachem, A.H. et al. Riluzole mediates anti-tumor properties in breast cancer cells independent of metabotropic glutamate receptor-1. Breast Cancer Res Treat 157, 217–228 (2016). https://doi.org/10.1007/s10549-016-3816-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-016-3816-x

Keywords

Navigation