Skip to main content

Advertisement

Log in

Individual responses to chemotherapy-induced oxidative stress

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Differences in redox homeostatic control between cancer patients may underlie predisposition to drug resistance and toxicities. To evaluate interindividual differences in redox response among newly diagnosed breast cancer patients undergoing standard chemotherapy, urine samples were collected before (T0), and at 1 (T1) and 24 h (T24) after chemotherapy administration. Oxidative status was assessed by urinary levels of allantoin and four F2-isoprostanes, quantified by LC–MS/MS. In all subjects, biomarker levels increased at T1 and returned to baseline at T24. Analyzing individual responses, two patterns were revealed: 10 subjects showed uniform increases of biomarker levels at T1 (“increase” pattern) and 8 subjects showed mixed (increase/unchanged/decrease) responses for different biomarkers (“mixed” pattern). The increase-pattern group had lower pre-treatment (T0) levels of the biomarkers and showed a sharp increase at T1 (64–141%) with a subsequent decrease at T24. The mixed-pattern group had higher pre-treatment biomarker levels and showed no change in biomarkers either at T1 or at T24. These findings indicate that there may be at least two distinct redox phenotypes with different homeostatic mechanisms balancing oxidative stress in humans. Recognizing redox phenotypes in human populations may lead to more precise assessment of health risks and benefits associated with individual redox make-up, and may also help to identify cancer patients who are especially susceptible to drug resistance and/or drug toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Abbreviations

AMPK:

AMP-activated protein kinase

LC–MS/MS:

liquid chromatography-tandem mass spectrometry

PGC-1-α:

peroxisome proliferator-activated receptor-γ coactivator-1α

T0:

time point of urine collection before administration of doxorubicin

T1:

time point of urine collection 1 h after administration of doxorubicin

T24:

time point of urine collection 24 h after administration of doxorubicin

UCPs:

uncoupling proteins (1-6)

UPLC–MS/MS:

ultra performance liquid chromatography-tandem mass spectrometry

References

  1. Doroshow JH (2006) Redox modulation of chemotherapy-induced tumor cell killing and normal tissue toxicity. J Natl Cancer Inst 98:223–225

    Article  CAS  PubMed  Google Scholar 

  2. Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142:231–255

    Article  CAS  PubMed  Google Scholar 

  3. Block G, Dietrich M, Norkus EP, Morrow JD, Hudes M, Caan B, Packer L (2002) Factors associated with oxidative stress in human populations. Am J Epidemiol 156:274–285

    Article  PubMed  Google Scholar 

  4. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  5. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    CAS  PubMed  Google Scholar 

  6. Il’yasova D, Spasojevich I, Wang F, Tolun AA, Base K, Young SP, Marcom PK, Marks J, Mixon G, Di Giulio R, Millington DS (2010) Urinary biomarkers of oxidative status in a clinical model of oxidative assault. Cancer Epidemiol Biomarkers Prev 19(6):1506–1510. doi:10.1158/1055-9965.EPI-10-0211

    Article  PubMed  Google Scholar 

  7. Il’yasova D, Mixon G, Wang F, Marcom PK, Marks J, Spasojevich I, Craft N, Arredondo F, DiGiulio R (2009) Markers of oxidative status in a clinical model of oxidative assault: a pilot study in human blood following doxorubicin administration. Biomarkers 14:321–325

    Article  PubMed  Google Scholar 

  8. Tolun AA, Zhang H, Il’yasova D, Sztbray J, Young SP, Millington DS (2010) Allantoin in human urine quantified by ultra-performance liquid chromatography-tandem mass spectrometry. Anal Biochem 402:191–193

    Article  CAS  PubMed  Google Scholar 

  9. Stowe DF, Camara AK (2009) Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal 11:1373–1414

    Article  CAS  PubMed  Google Scholar 

  10. Brookes PS (2005) Mitochondrial H(+) leak and ROS generation: an odd couple. Free Radic Biol Med 38:12–23

    Article  CAS  PubMed  Google Scholar 

  11. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  CAS  PubMed  Google Scholar 

  12. Santos CX, Tanaka LY, Wosniak J, Laurindo FR (2009) Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal 11:2409–2427

    Article  CAS  PubMed  Google Scholar 

  13. Wosniak J Jr, Santos CX, Kowaltowski AJ, Laurindo FR (2009) Cross-talk between mitochondria and NADPH oxidase: effects of mild mitochondrial dysfunction on angiotensin II-mediated increase in Nox isoform expression and activity in vascular smooth muscle cells. Antioxid Redox Signal 11:1265–1278

    Article  CAS  PubMed  Google Scholar 

  14. Lopes LR, Dagher MC, Gutierrez A, Young B, Bouin AP, Fuchs A, Babior BM (2004) Phosphorylated p40PHOX as a negative regulator of NADPH oxidase. Biochemistry 43:3723–3730

    Article  CAS  PubMed  Google Scholar 

  15. Desouki MM, Kulawiec M, Bansal S, Das GM, Singh KK (2005) Cross talk between mitochondria and superoxide generating NADPH oxidase in breast and ovarian tumors. Cancer Biol Ther 4:1367–1373

    Article  CAS  PubMed  Google Scholar 

  16. Fogarty S, Hardie DG (2010) Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim Biophys Acta 1804:581–591

    CAS  PubMed  Google Scholar 

  17. Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361–370

    Article  PubMed  Google Scholar 

  18. Chan SH, Wu CA, Wu KL, Ho YH, Chang AY, Chan JY (2009) Transcriptional upregulation of mitochondrial uncoupling protein 2 protects against oxidative stress-associated neurogenic hypertension. Circ Res 105:886–896

    Article  CAS  PubMed  Google Scholar 

  19. Handschin C (2009) Peroxisome proliferator-activated receptor-gamma coactivator-1alpha in muscle links metabolism to inflammation. Clin Exp Pharmacol Physiol 36:1139–1143

    Article  CAS  PubMed  Google Scholar 

  20. Kahn BB, Alquier T, Carling D, Hardie DG (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1:15–25

    Article  CAS  PubMed  Google Scholar 

  21. Lombardi A, de Lange P, Silvestri E, Busiello RA, Lanni A, Goglia F, Moreno M (2009) 3, 5-Diiodo-L-thyronine rapidly enhances mitochondrial fatty acid oxidation rate and thermogenesis in rat skeletal muscle: AMP-activated protein kinase involvement. Am J Physiol Endocrinol Metab 296(3):E497–E502

    Article  CAS  PubMed  Google Scholar 

  22. Il’yasova D, Morrow JD, Wagenknecht LE (2005) Urinary F2-isoprostanes are not associated with increased risk of type 2 diabetes. Obes Res 13:1638–1644

    Article  PubMed  Google Scholar 

  23. Olmos Y, Valle I, Borniquel S, Tierrez A, Soria E, Lamas S, Monsalve M (2009) Mutual dependence of Foxo3a and PGC-1alpha in the induction of oxidative stress genes. J Biol Chem 284:14476–14484

    Article  CAS  PubMed  Google Scholar 

  24. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, JSger S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397–408

    Article  CAS  PubMed  Google Scholar 

  25. Kong X, Fan H, Liu X, Wang R, Liang J, Gupta N, Chen Y, Fang F, Chang Y (2009) Peroxisome proliferator-activated receptor gamma coactivator-1alpha enhances antiproliferative activity of 5’-deoxy-5-fluorouridine in cancer cells through induction of uridine phosphorylase. Mol Pharmacol 76:854–860

    Article  CAS  PubMed  Google Scholar 

  26. Wojnowski L, Kulle B, Schirmer M, Schluter G, Schmidt A, Rosenberger A, Vonhof S, Bickeboller H, Toliat MR, Suk EK, Tzvetkov M, Kruger A, Seifert S, Kloess M, Hahn H, Loeffler M, Nurnberg P, Pfreundschuh M, Trumper L, Brockmoller J, Hasenfuss G (2005) NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation 112:3754–3762

    Article  CAS  PubMed  Google Scholar 

  27. Hoffmann M, Schirmer MA, Tzvetkov MV, Kreuz M, Ziepert M, Wojnowski L, Kube D, Pfreundschuh M, Trumper L, Loeffler M, Brockmoller J (2010) A functional polymorphism in the NAD(P)H oxidase subunit CYBA is related to gene expression, enzyme activity, and outcome in non-Hodgkin lymphoma. Cancer Res 70:2328–2338

    Article  CAS  PubMed  Google Scholar 

  28. Landriscina M, Maddalena F, Laudiero G, Esposito F (2009) Adaptation to oxidative stress, chemoresistance, and cell survival. Antioxid Redox Signal 11:2701–2716

    Article  CAS  PubMed  Google Scholar 

  29. Pennington JD, Wang TJ, Nguyen P, Sun L, Bisht K, Smart D, Gius D (2005) Redox-sensitive signaling factors as a novel molecular targets for cancer therapy 1. Drug Resist Updat 8:322–330

    Article  CAS  PubMed  Google Scholar 

  30. Yokomizo A, Ono M, Nanri H, Makino Y, Ohga T, Wada M, Okamoto T, Yodoi J, Kuwano M, Kohno K (1995) Cellular levels of thioredoxin associated with drug sensitivity to cisplatin, mitomycin C, doxorubicin, and etoposide 1. Cancer Res 55:4293–4296

    CAS  PubMed  Google Scholar 

  31. Mitchell JB, Russo A (1987) The role of glutathione in radiation and drug induced cytotoxicity 1. Br J Cancer Suppl 8:96–104

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by a Duke Comprehensive Cancer Center pilot study award, NIH SPORE Grant 5P50 CA68438, the Department of Defense Breast Cancer Research Program (BCRP) predoctoral traineeship award BC083154, and Anna Merills’ Fund for Down Syndrome Research Foundation grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dora Il’yasova.

Additional information

Disclosure

Authors of this manuscript, Dora Il’yasova, Kelly Kennedy, Ivan Spasojevic, Frances Wang, Adviye A. Tolun, Karel Base, Sarah P. Young, P Kelly Marcom, Jeffrey Marks, David S. Millington, and Mark Dewhirst, have neither actual nor potential commercial associations that might create a conflict of interest in connection with submitted manuscripts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Il’yasova, D., Kennedy, K., Spasojevic, I. et al. Individual responses to chemotherapy-induced oxidative stress. Breast Cancer Res Treat 125, 583–589 (2011). https://doi.org/10.1007/s10549-010-1158-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-1158-7

Keywords

Navigation