Skip to main content
Log in

Roughness-Length Model for Organized Rough Walls

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A model for the roughness length and its correlation with the roughness shear stress on organized rough walls of varying geometry are presented and verified. The roughness length is nondimensionalized by the characteristic roughness length and is expressed as a function of roughness density with a wake-interference parameter. The dimensionless roughness length is independent of Reynolds number. When the model is applied to the whole range of roughness densities, the rough walls can be smooth, transitionally rough, and fully rough. A large number of data from classical experiments and recent simulations are analyzed to evaluate the proposed correlations, which are found to be consistent with the analyzed datasets. The proposed expression for the dimensionless roughness length and the expression for the dimensionless roughness shear stress, proposed previously by the author (Boundary-Layer Meteorology, 2020, Vol. 174, 393–410), are found to be identical in form. Numerous extant measurements of the two roughness parameters can be reproduced when the wake-interference parameters in the two models are treated as identical. The parameters of the roughness-length model are closely related to the geometry of the roughness elements. Different types of roughness elements can be distinguished by the values of the parameters. These results provide the foundation for constructing the unified roughness model for organized rough walls of varying geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acharya M, Bornstein J, Escudier MP (1986) Turbulent boundary layers on rough surfaces. Exp Fluids 4:33–47

    Article  Google Scholar 

  • Bandyopadhyay PR (1987) Rough-wall turbulent boundary layers in the transition regime. J Fluid Mech 180:231–266

    Article  Google Scholar 

  • Barlow JF, Coceal O (2009) A review of urban roughness sublayer turbulence. Technical Report 527, UK Met Office

  • Belcher SE, Jerram N, Hunt JCR (2003) Adjustment of a turbulent boundary layer to a canopy of roughness elements. J Fluid Mech 488:369–398

    Article  Google Scholar 

  • Bottema M (1996) Roughness parameters over regular rough surfaces: experimental requirements and model validation. J Wind Eng Ind Aerodyn 64:249–265

    Article  Google Scholar 

  • Castro IP (1979) Relaxing wakes behind surface-mounted obstacles in rough wall boundary layers. J Fluid Mech 93:631–659

    Article  Google Scholar 

  • Castro IP, Robins AG (1977) The flow around a surface-mounted cube in uniform and turbulent streams. J Fluid Mech 79:307–335

    Article  Google Scholar 

  • Chan L, Macdonald M, Chung D, Hutchins N, Ooi A (2015) A systematic investigation of roughness height and wavelength in turbulent pipe flow in the transitionally rough regime. J Fluid Mech 771:743–777

    Article  Google Scholar 

  • Cheng H, Castro IP (2002) Near wall flow over urban-like roughness. Boundary-Layer Meteorol 104:229–259

    Article  Google Scholar 

  • Chung D, Hutchins N, Schultz MP, Flack KA (2021) Predicting the drag of rough surfaces. Annu Rev Fluid Mech 53:439–471

    Article  Google Scholar 

  • Clauser FH (1956) The turbulent boundary layer. Adv Appl Mech 4:1–51

    Article  Google Scholar 

  • Colebrook CF, White CM (1937) Experiments with fluid friction in roughened pipes. Proc Roy Soc 161:367–381

    Google Scholar 

  • Coleman SE, Nikora VI, McLean SR, Schlicke E (2007) Spatially averaged turbulent flow over square ribs. J Eng Mech 133:194–204

    Google Scholar 

  • Coles D (1956) The law of the wake in the turbulent boundary layer. J Fluid Mech 1:191–226

    Article  Google Scholar 

  • Counihan J (1971) Wind tunnel determination of the roughness length as a function of the fetch and the roughness density of three-dimensional roughness elements. Atmos Environ 5:637–642

    Article  Google Scholar 

  • Counihan J (1975) Adiabatic atmospheric boundary layers: A review and analysis of data from the period 1880–1972. Atmos Environ 9:871–905

    Article  Google Scholar 

  • Counihan J, Hunt J, Jackson PS (1974) Wakes behind two-dimensional surface obstacles in turbulent boundary layers. J Fluid Mech 64:529–563

    Article  Google Scholar 

  • Cui J, Patel VC, Lin C (2003) Large-eddy simulation of turbulent flow in a channel with rib roughness. Int J Heat Fluid Flow 24:372–388

    Article  Google Scholar 

  • Djenidi L, Elavarasan R, Antonia RA (1999) The turbulent boundary layer over transverse square cavities. J Fluid Mech 395:271–294

    Article  Google Scholar 

  • Donne MD, Meyer L (1977) Turbulent convective heat transfer from rough surfaces with two-dimensional rectangular ribs. Int J Heat Mass Transf 20:583–620

    Article  Google Scholar 

  • Feurstein G, Rampf G (1969) Der Einfluß rechteckiger Rauhigkeiten auf den Wärmeübergang und den Druckabfall in turbulenter Ringspaltströmung. Wärme- und Stoffübertragung 2:19–30

    Article  Google Scholar 

  • Finnigan J (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32:519–571

    Article  Google Scholar 

  • Flack KA, Schultz MP (2010) Review of hydraulic roughness scales in the fully rough regime. J Fluids Eng 132:041203

    Article  Google Scholar 

  • Forooghi P, Stroh A, Magagnato F, Jakirlic S, Frohnapfel B (2017) Toward a universal roughness correlation. J Fluids Eng 139:121201

    Article  Google Scholar 

  • Frisch U (1995) Turbulence: the legacy of A.N. Kolmogorov. Cambridge Univ Press, UK

  • Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge

    Google Scholar 

  • Grimmond CSB, Oke TR (1999) Aerodynamic properties of urban areas derived from analysis of surface form. J Appl Meteorol 38:1262–1292

    Article  Google Scholar 

  • Hagishima A, Tanimoto J, Nagayama K, Meno S (2009) Aerodynamic parameters of regular arrays of rectangular blocks with various geometries. Boundary-Layer Meteorol 132:315–337

    Article  Google Scholar 

  • Hall D, Macdonald R, Walker S (1996) Measurements of dispersion within simulated urban arrays: a small scale wind tunnel study. Technical report 178/96, Building Research Establishment Client Report

  • Hama F (1954) Boundary-layer characteristics for rough and smooth surfaces. Trans Soc Nav Arch Mar Eng 62:333–358

    Google Scholar 

  • Hunt JCR (1971) A theory for the laminar wake of a two-dimensional body in a boundary layer. J Fluid Mech 49:159–178

    Article  Google Scholar 

  • Jackson PS (1981) On the displacement height in the logarithmic velocity profile. J Fluid Mech 111:15–25

    Article  Google Scholar 

  • Jiménez J (2004) Turbulent flows over rough walls. Annu Rev Fluid Mech 36:173–196

    Article  Google Scholar 

  • Kanda M, Moriwaki R, Kasamatsu F (2004) Large-eddy simulation of turbulent organized structures within and above explicitly resolved cube arrays. Boundary-Layer Meteorol 112:343–368

    Article  Google Scholar 

  • Koch R (1958) Druckverlust und Wärmeübergang bei verwirbelter Strömung. VDI-Forschungsheft 24:1–44

    Google Scholar 

  • Koloseus H, Davidian J (1966) Free-surface instability correlations, and roughness-concentration effects on flow over hydrodynamically rough surfaces. Technical report 1592-CD, USGS Water-Supply Paper

  • Krogstad PÅ, Efros V (2010) Rough wall skin friction measurements using a high resolution surface balance. Int J Heat Fluid Flow 31:429–433

    Article  Google Scholar 

  • Krogstad PÅ, Antonia R, Browne L (1992) Comparison between rough- and smooth-wall turbulent boundary layers. J Fluid Mech 245:599–617

    Article  Google Scholar 

  • Leonardi S, Castro IP (2010) Channel flow over large cube roughness: a direct numerical simulation study. J Fluid Mech 651:519–539

    Article  Google Scholar 

  • Leonardi S, Orlandi P, Smalley RJ, Djenidi L, Antonia RA (2003) Direct numerical simulations of turbulent channel flow with transverse square bars on one wall. J Fluid Mech 491:229–238

    Article  Google Scholar 

  • Lettau H (1969) Note on aerodynamic roughness-parameter estimation on the basis of roughness-element description. J Appl Meteorol 8:828–832

    Article  Google Scholar 

  • Li Z (2020) Turbulent-resistance model for organized rough walls. Boundary-layer Meteorol 174:393–410

    Article  Google Scholar 

  • Ligrani PM, Moffat RJ (1986) Structure of transitionally rough and fully rough turbulent boundary layers. J Fluid Mech 162:69–98

    Article  Google Scholar 

  • MacDonald RW, Griffiths RF, Hall D (1998) An improved method for the estimation of surface roughness of obstacle arrays. Atmos Environ 32:1857–1864

    Article  Google Scholar 

  • MacDonald RW, Schofield SC, Slawson PR (2002) Physical modelling of urban roughness using arrays of regular roughness elements. Water Air Soil Pollut 2:541–554

    Article  Google Scholar 

  • MacDonald M, Hutchins N, Chung D (2019) Roughness effects in turbulent forced convection. J Fluid Mech 861:138–162

    Article  Google Scholar 

  • Marshall JK (1971) Drag measurements in roughness arrays of varying density and distribution. Agric Meteorol 8:269–292

    Article  Google Scholar 

  • Marusic I, McKeon BJ, Monkewitz PA, Nagib HM, Smits AJ, Sreenivasan KR (2010) Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys Fluids 22:065103

    Article  Google Scholar 

  • Marusic I, Monty JP, Hultmark M, Smits AJ (2013) On the logarithmic region in wall turbulence. J Fluid Mech 716:R3

    Article  Google Scholar 

  • Mason P, Morton B (1987) Trailing vortices in the wakes of surface-mounted obstacles. J Fluid Mech 175:247–293

    Article  Google Scholar 

  • May R (1976) Simple mathematical models with very complicated dynamics. Nature 261:459–467

    Article  Google Scholar 

  • Mehdi F, Klewicki JC, White CM (2013) Mean force structure and its scaling in rough-wall turbulent boundary layers. J Fluid Mech 731:682–712

    Article  Google Scholar 

  • Millward-Hopkins JT, Tomlin AS, Ma L, Ingham D, Pourkashanian M (2011) Estimating aerodynamic parameters of urban-like surfaces with heterogeneous building heights. Boundary-Layer Meteorol 141:443–465

    Article  Google Scholar 

  • Möbius H (1940) Experimentelle Untersuchung des Widerstandes und der Geschwindigkeitsverteilung in Rohren mit regelmäßig angeordneten Rauhigkeiten bei turbulenter Strömung. Phys Z 41:202–225

    Google Scholar 

  • Moody LF (1944) Friction factors for pipe flow. Trans ASME 66:671–684

    Google Scholar 

  • Nikuradse J (1933) Laws of flow in rough pipes. Techical report 1292, NACA Tech Mem

  • Orlandi P, Leonardi S, Antonia RA (2006) Turbulent channel flow with either transverse or longitudinal roughness elements on one wall. J Fluid Mech 561:279–305

    Article  Google Scholar 

  • Perry AE, Schofield WH, Joubert PN (1969) Rough wall turbulent boundary layers. J Fluid Mech 37:383–413

    Article  Google Scholar 

  • Placidi M, Ganapathisubramani B (2015) Effects of frontal and plan solidities on aerodynamic parameters and the roughness sublayer in turbulent boundary layers. J Fluid Mech 782:541–566

    Article  Google Scholar 

  • Prandtl L (1904) Motion of fluids with very little viscosity. Technical report 452, NACA Tech Mem

  • Raupach MR (1992) Drag and drag partition on rough surfaces. Boundary-Layer Meteorol 60:375–395

    Article  Google Scholar 

  • Raupach MR (1994) Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index. Boundary-Layer Meteorol 71:211–216

    Article  Google Scholar 

  • Raupach MR, Thom AS, Edwards I (1980) A wind-tunnel study of turbulent flow close to regularly arrayed rough surfaces. Boundary-Layer Meteorol 18:373–397

    Article  Google Scholar 

  • Raupach MR, Antonia RA, Rajagopalan S (1991) Rough-wall turbulent boundary layers. Appl Mech Rev 44:1–25

    Article  Google Scholar 

  • Sadique J, Yang XIA, Meneveau C, Mittal R (2017) Aerodynamic properties of rough surfaces with high aspect-ratio roughness elements: effect of aspect ratio and arrangements. Boundary-Layer Meteorol 163:203–224

    Article  Google Scholar 

  • Sau A, Hwang RR, Sheu TWH, Yang WC (2003) Interaction of trailing vortices in the wake of a wall-mounted rectangular cylinder. Phys Rev E 68:056303

    Article  Google Scholar 

  • Sayre WW, Albertson ML (1961) Roughness spacing in rigid open channels. Proc ASCE 88(HY4):121–149

    Google Scholar 

  • Schlichting H (1936) Experimental investigation of the problem of surface roughness. Technical report 823, NACA Tech Mem

  • Schlichting H, Gersten K (2017) Boundary layer theory, 9th edn. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Schultz MP, Flack KA (2007) The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime. J Fluid Mech 580:381–405

    Article  Google Scholar 

  • Simpson RL (1973) A generalized correlation of roughness density effects on the turbulent boundary layer. AIAA J 11:242–244

    Article  Google Scholar 

  • Squire DT, Morrill-Winter C, Hutchins N, Schultz MP, Klewicki JC, Marusic I (2016) Comparison of turbulent boundary layers over smooth and rough surfaces up to high Reynolds numbers. J Fluid Mech 795:210–240

    Article  Google Scholar 

  • Townsend AA (1965) Self-preserving flow inside a turbulent boundary layer. J Fluid Mech 22:773–797

    Article  Google Scholar 

  • Townsend AA (1976) The structure of turbulent shear flow, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • von Kármán T (1921) On laminar and turbulent friction. Technical report 1092, NACA Tech Mem

  • von Kármán T (1930) Mechanical similitude and turbulence. Technical Report 611, NACA Tech Mem

  • Waigh DR, Kind RJ (1998) Improved aerodynamic characterization of regular three-dimensional roughness. AIAA J 36:1117–1119

    Article  Google Scholar 

  • Webb RL, Eckert ERG, Goldstein RJ (1971) Heat transfer and friction in tubes with repeated-rib roughness. Int J Heat Mass Transf 14:601–617

    Article  Google Scholar 

  • Wei T, Fife P, Klewicki J, McMurtry P (2005) Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows. J Fluid Mech 522:303–327

    Article  Google Scholar 

  • Wooding RA, Bradley EF, Marshall JK (1973) Drag due to regular arrays of roughness elements of varying geometry. Boundary-Layer Meteorol 5:285–308

    Article  Google Scholar 

  • Yaglom AM (1979) Similarity laws for constant-pressure and pressure-gradient turbulent wall flows. Annu Rev Fluid Mech 11:505–540

    Article  Google Scholar 

  • Yang XIA, Sadique J, Mittal R, Meneveau C (2016) Exponential roughness layer and analytical model for turbulent boundary layer flow over rectangular-prism roughness elements. J Fluid Mech 789:127–165

    Article  Google Scholar 

  • Zhu X, Anderson W (2019) Turbulent flow over urban-like fractals: Prognostic roughness model for unresolved generations. J Turb 19:995–1016

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous reviewers and the editors for their valuable comments and suggestions. This work is funded by National Natural Science Foundation of China and China Postdoctoral Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuoqun Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z. Roughness-Length Model for Organized Rough Walls. Boundary-Layer Meteorol 180, 435–455 (2021). https://doi.org/10.1007/s10546-021-00630-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-021-00630-4

Keywords

Navigation