Skip to main content
Log in

Impact of Wildfire on the Surface Energy Balance in Six California Case Studies

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We investigate the impact of wildfires on surface energy exchange through the assessment of six California wildfires that occurred in the last 20 years. A burned–unburned binary mask was generated from the MODIS approximate date of burn product and implemented into the Simplified Simple Biosphere model for a series of simulations. Model performance was evaluated against the North American Land Data Assimilation System and is found to simulate surface temperature and net radiation accurately. Simulations show a decrease in latent heat flux in every case study except the Rush fire, which occurred in Lassen County in August 2012. Post-fire changes in net radiation and sensible heat followed similar trends, decreasing in each of the domains except for the Rush and Cedar fires. The greatest changes in temporally-averaged net radiation occurred in the Rim (− 41.7 W m−2), Basin Complex (− 31.6 W m−2), and Rush (26.5 W m−2) fires. Initial increases in sensible heat flux, caused by the decrease in albedo from ash deposition, are balanced by decreases in latent heat flux in the Zaca, Rim, and Basin Complex case studies. Results also indicate a relationship between decreases in average sensible heat flux and leaf-area-index change. Wildfires that burn in sparsely vegetated areas are associated with increases in sensible heat flux, an effect that is magnified by long ash-deposition periods (i.e., Rush fire), while wildfires that burn in densely vegetated areas are associated with large decreases in sensible and latent heat flux (i.e., Rim, Basin Complex fires).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

Download references

Acknowledgements

This study is based upon work supported by a San Diego State University 2020 UGP award. The authors would like to thank the NCAR Computational and Information System Laboratory and the SDSU Center for Earth System Analysis Research for providing the computer facilities necessary for the completion of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando De Sales.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rother, D., De Sales, F. Impact of Wildfire on the Surface Energy Balance in Six California Case Studies. Boundary-Layer Meteorol 178, 143–166 (2021). https://doi.org/10.1007/s10546-020-00562-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-020-00562-5

Keywords

Navigation