Skip to main content
Log in

mTOR inhibitors rescue premature lethality and attenuate dysregulation of GABAergic/glutamatergic transcription in murine succinate semialdehyde dehydrogenase deficiency (SSADHD), a disorder of GABA metabolism

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Recent studies have identified a role for supraphysiological gamma-aminobutyric acid (GABA) in the regulation of mechanistic target of rapamycin (mTOR), a protein kinase with pleiotropic roles in cellular development and homeostasis, including integration of growth factors and nutrient sensing and synaptic input in neurons (Lakhani et al. 2014; Vogel et al. 2015). Aldehyde dehydrogenase 5a1-deficient (aldh5a1 -/-) mice, the murine orthologue of human succinic semialdehyde dehydrogenase deficiency (SSADHD), manifest increased GABA that disrupts mitophagy and increases mitochondria number with enhanced oxidant stress. Treatment with the mTOR inhibitor, rapamycin, significantly attenuates these GABA-related anomalies. We extend those studies through characterization of additional rapamycin analog (rapalog) agents including temsirolimus, dual mTOR inhibitors [Torin 1 and 2 (Tor 1/ Tor 2), Ku-0063794, and XL-765], as well as mTOR-independent autophagy inducers [trehalose, tat-Beclin 1, tacrolimus (FK-506), and NF-449) in aldh5a1 -/- mice. Rapamycin, Tor 1, and Tor 2 rescued these mice from premature lethality associated with status epilepticus. XL-765 extended lifespan significantly and induced weight gain in aldh5a1 -/- mice; untreated aldh5a1 -/- mice failed to increase body mass. Expression profiling of animals rescued with Tor 1/Tor 2 and XL-765 revealed multiple instances of pharmacological compensation and/or correction of GABAergic and glutamatergic receptors, GABA/glutamate transporters, and GABA/glutamate-associated proteins, with Tor 2 and XL-765 showing optimal outcomes. Our studies lay the groundwork for further evaluation of mTOR inhibitors in aldh5a1 -/- mice, with therapeutic ramifications for heritable disorders of GABA and glutamate neurotransmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

GABA:

Gamma-aminobutyric acid

Glu:

Glutamate

Tor 1:

Torin 1

Tor 2:

Torin 2

SSADH:

Succinic semialdehyde dehydrogenase

SSADHD:

Succinic semialdehyde dehydrogenase deficiency

aldh5a1 :

aldehyde dehydrogenase 5a1 (identical to succinic semialdehyde dehydrogenase)

References

Download references

Acknowledgments

This work was supported in part by R21 NS 85369

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kara R. Vogel.

Ethics declarations

Conflict of interest

None.

Animal rights

All institutional and national guidelines for the care and use of laboratory animals were followed.

Additional information

Communicated by: Niels Gregersen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogel, K.R., Ainslie, G.R. & Gibson, K.M. mTOR inhibitors rescue premature lethality and attenuate dysregulation of GABAergic/glutamatergic transcription in murine succinate semialdehyde dehydrogenase deficiency (SSADHD), a disorder of GABA metabolism. J Inherit Metab Dis 39, 877–886 (2016). https://doi.org/10.1007/s10545-016-9959-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-016-9959-4

Keywords

Navigation