Skip to main content
Log in

Lack of phosphomannomutase 2 affects Xenopus laevis morphogenesis and the non-canonical Wnt5a/Ror2 signalling

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Reduced phosphomannomutase 2 activity in man leads to hypoglycosylation of glycoconjugates causing PMM2-CDG, the most common type of congenital disorders of glycosylation. Here we show that an antisense morpholino-mediated knockdown of the Xenopus laevis phosphomannomutase 2 gene provoked a general underglycosylation in frog embryos, which led to an altered phenotype and reduced glycosylation of Wnt5a as member of the non-canonical Wnt signalling. Loss of function experiments in hemi-sectioned embryos proved that due to the phosphomannomutase 2 knockdown expression of the Wnt5a/Ror2 target gene paraxial protocadherin was significantly decreased. Regarding the expression of paraxial protocadherin, a gain of function could only be achieved by injections of wnt5a and ror2 in dorsal neighbouring blastomeres, while a parallel injection of phosphomannomutase 2 morpholino led to a significant reduced level of expression. Our data show for the first time that a knockdown of phosphomannomutase 2 influences in vivo the non-canonical Wnt signalling during early embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amerongen VR, Berns A (2006) Knockout mouse models to study Wnt signal transduction. Trends Genet 22:678–689

    Article  PubMed  Google Scholar 

  • Barrabés S, Sarrats A, Fort E et al (2010) Effect of sialic acid content on glycoprotein pI analyzed by two-dimensional electrophoresis. Electrophoresis 31:2903–2912

    Article  PubMed  Google Scholar 

  • Bokhoven VH, Celli J, Kayserili H et al (2000) Mutation of the gene encoding the ROR2 tyrosine kinase causes autosomal recessive Robinow syndrome. Nat Genet 25:423–426

    Article  PubMed  Google Scholar 

  • Brunetti-Pierri N, Del Gaudio D, Peters H et al (2008) Robinow syndrome: phenotypic variability in a family with a novel intragenic ROR2 mutation. Am J Med Genet 146A:2804–2809

    Article  CAS  PubMed  Google Scholar 

  • Buttler K, Becker J, Pukrop T et al (2013) Maldevelopment of dermal lymphatics in Wnt5a-knockout-mice. Dev Biol 381:365–376

    Article  CAS  PubMed  Google Scholar 

  • Chu J, Mir A, Gao N et al (2013) A zebrafish model of congenital disorders of glycosylation with phosphomannose isomerase deficiency reveals an early opportunity for corrective mannose supplementation. Dis Model Mech 6:95–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cline A, Gao N, Flanagan-Steet H et al (2012) A zebrafish model for PMM2-CDG and a substrate-accumulation mechanism for N-linked glycosylation deficiency. MBoC 23:4175–4187

    CAS  Google Scholar 

  • Cruciat CM, Hassler C, Niehrs C (2006) The MRH protein Erlectin is a member of the endoplasmic reticulum synexpression group and functions in N-glycan recognition. J Biol Chem 281:12986–12993

    Article  CAS  PubMed  Google Scholar 

  • Cylwik B, Naklicki M, Chrostek L et al (2013) Congenital disorders of glycosylation. Part I. Defects in protein N-glycosylation. Acta Biochim Pol 60:151–161

    CAS  PubMed  Google Scholar 

  • Davidson LA, Joshi SD, Kim HY et al (2010) Emergent morphogenesis: elastic mechanics of a self-deforming tissue. J Biomech 43:63–70

  • Defaus S, Gupta P, Andreu D et al (2014) Mammalian protein glycosylation-structure versus function. Analyst 139:2944–2967

    Article  CAS  PubMed  Google Scholar 

  • Del Barco Barrantes I, Davidson G, Gröne HJ et al (2003) Dkk1 and noggin cooperate in mammalian head induction. Genes Dev 17:2239–2244

    Article  PubMed Central  PubMed  Google Scholar 

  • Grünewald S (2009) The clinical spectrum of phosphomannomutase 2 deficiency (CDG-Ia). Biochim Biophys Acta 1792:827–834

    Article  PubMed  Google Scholar 

  • Haniu M, Horan T, Spahr C et al (2011) Human Dickkopf-1 (huDKK1) protein: characterization of glycosylation and determination of disulfide linkages in the two cysteine-rich domains. Protein Sci 20:1802–1813

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heisenberg CP, Bellaiche Y (2013) Forces in tissue morphogenesis and patterning. Cell 153:948–962

    Article  CAS  PubMed  Google Scholar 

  • Herr P, Hausmann G, Basler K (2012) WNT secretion and signalling in human disease. Trends Mol Med 18:483–493

    Article  CAS  PubMed  Google Scholar 

  • Hikasa H, Shibata M, Hiratani I et al (2002) The Xenopus receptor tyrosine kinase Xror2 modulates morphogenetic movements of the axial mesoderm and neuroectoderm via Wnt signaling. Development 129:5227–5239

    CAS  PubMed  Google Scholar 

  • Jaeken J (2013) Congenital disorders of glycosylation. Handb Clin Neurol 113:1737–1743

    Article  CAS  PubMed  Google Scholar 

  • Keller R, Jansa S (1992) Xenopus gastrulation without a blastocoel roof. Dev Dyn 195:162–176

  • Kikuchi A, Yamamoto H, Sato A et al (2011) New insights into the mechanism of Wnt signalling pathway activation. Int Rev Cell Mol Biol 291:21–71

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi A, Yamamoto H, Sato A et al (2012) Wnt5a: its signalling, functions and implication in diseases. Acta Physiol (Oxf) 204:17–33

    Article  CAS  Google Scholar 

  • Kim SH, Yamamoto A, Bouwmeester T et al (1998) The role of paraxial protocadherin in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation. Development 125:4681–4690

    CAS  PubMed  Google Scholar 

  • Körner C, Lehle L, von Figura K (1998) Abnormal synthesis of mannose 1-phosphate derived carbohydrates in carbohydrate-deficient glycoprotein syndrome type I fibroblasts with phosphomannomutase deficiency. Glycobiology 8:165–171

    Article  PubMed  Google Scholar 

  • Kurayoshi M, Yamamoto H, Izumi S et al (2007) Post-translational palmitoylation and glycosylation of Wnt-5a are necessary for its signalling. Biochem J 402:515–523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liwosz A, Lei T, Kukuruzinska MA (2006) N-glycosylation affects the molecular organization and stability of E-cadherin junctions. JBC 281:23138–23149

    Article  CAS  Google Scholar 

  • Logan CY, Nusse R (2004) The Wnt signalling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  CAS  PubMed  Google Scholar 

  • Matthijs G, Schollen E, Pardon E et al (1997) Mutations in PMM2, a phosphomannomutase gene on chromosome 16p13, in carbohydrate-deficient glycoprotein type I syndrome (Jaeken syndrome). Nat Genet 16:88–92

    Article  CAS  PubMed  Google Scholar 

  • Medina A, Swain RK, Kuerner KM et al (2004) Xenopus paraxial protocadherin has signalling functions and is involved in tissue separation. EMBO J 23:3249–3258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nieuwkoop, Faber (1994) Normal table of Xenopus laevis (Daudin). Garland, New York

  • Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126:855–867

    Article  CAS  PubMed  Google Scholar 

  • Person AD, Beiraghi S, Sieben CM et al (2010) WNT5A mutations in patients with autosomal dominant Robinow syndrome. Dev Dyn Off Publ Am Assoc Anat 239:327–337

    CAS  Google Scholar 

  • Pires-da Silva A, Sommer RJ (2003) The evolution of signalling pathways in animal development. Nat Rev Genet 4:39–49

    Article  CAS  Google Scholar 

  • Podbilewicz B (2004) Sweet control of cell migration, cytokinesis and organogenesis. Nat Cell Biol 6:9–11

    Article  CAS  PubMed  Google Scholar 

  • Porter A, Yue T, Heeringa L et al (2010) A motif-based analysis of glycan array data to determine the specificities of glycan-binding proteins. Glycobiology 20:369–380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roszko I, Sawada A, Solnica-Krezel L (2009) Regulation of convergence and extension movements during vertebrate gastrulation by the Wnt/PCP pathway. Semin Cell Dev Biol 20:986–997

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santiago-Medina M, Myers JP, Gomez TM (2012) Imaging adhesion and signalling dynamics in Xenopus laevis growth cones. Dev Neurobiol 72:585–599

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schambony A, Wedlich D (2007) Wnt-5A/Ror2 regulate expression of XPAPC through an alternative noncanonical signalling pathway. Dev Cell 12:779–792

    Article  CAS  PubMed  Google Scholar 

  • Schneider A, Thiel C, Rindermann J et al (2011) Successful prenatal mannose trearment for congenital disorder of glycosylation-Ia in mice. Nat Med 18:71–73

    Article  PubMed  Google Scholar 

  • Sharma V, Nayak J, DeRossi C et al (2014) Mannose supplements induce embryonic lethality and blindness in phosphomannose isomerase hypomorphic mice. FASEB J 28:1854–1869

    Article  PubMed Central  PubMed  Google Scholar 

  • Sive HL, Grainger RM, Harland RM (2000) Early development of Xenopus laevis: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Struwe WB, Reinhold VN (2012) The conserved oligomeric Golgi complex is required for fucosylation of N-glycans in Caenorhabditis elegans. Glycobiology 22:863–875

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swain RK, Katoh M, Medina A et al (2005) Xenopus frizzled-4S, a splicing variant of Xfz4 is a context-dependent activator and inhibitor of Wnt/beta-catenin signaling. Cell Commun Signal 3:12

    Article  PubMed Central  PubMed  Google Scholar 

  • Tadros W, Lipshitz HD (2009) The maternal-to-zygotic transition: a play in two acts. Development 136:3033–3042

    Article  CAS  PubMed  Google Scholar 

  • Thiel C, Körner C (2011) Mouse models for congenital disorders of glycosylation. J Inherit Metab Dis 34:879–889

    Article  CAS  PubMed  Google Scholar 

  • Thiel C, Lübke T, Matthijs G et al (2006) Targeted disruption of the mouse phosphomannomutase 2 gene causes early embryonic lethality. Mol Cell Biol 26:5615–5620

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Unterseher F, Hefele JA, Giehl K et al (2004) Paraxial protocadherin coordinates cell polarity during convergent extension via Rho A and JNK. EMBO J 23:3259–3269

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Willert K, Nusse R (2012) Wnt proteins. Cold Spring Harb Perspect Biol 4:1–13

    Article  Google Scholar 

  • Yamamoto H, Awada C, Hanaki H et al (2013) The apical and basolateral secretion of Wnt11 and Wnt3a in polarized epithelial cells is regulated by different mechanisms. J Cell Sci 126:2931–2943

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H, Awada C, Matsumoto S, Kaneiwa T, Sugimoto T, Takao T, Kikuchi A (2015) Basolateral secretion of Wnt5a in polarized epithelial cells is required for apical lumen formation. J Cell Sci 128:1051–1063

    Article  CAS  PubMed  Google Scholar 

  • Yuan L, Cao Y, Knöchel W (2007) Endoplasmic reticulum stress induced by tunicamycin disables germ layer formation in Xenopus laevis embryos. Dev Dyn 236:2844–2851

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We dedicate this work to Herbert Steinbeisser and Christian Körner, who initiated and shaped this project, but could not live to see its outcome. This work was supported by a grant of the Else Kröner-Fresenius-Stiftung to CK and CT (AZ: 2010 A89).

Compliance with ethics guidelines

All institutional and national guidelines for the care and use of laboratory animals were followed.

Conflict of interest

None.

Informed consent

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Thiel.

Additional information

Communicated by: Jaak Jaeken

Herbert Steinbeisser and Christian Körner were deceased

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Pmm2 identification in Xenopus laevis (Himmelreich et al Supplemental Fig. 1.pdf) (DOCX 261 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Himmelreich, N., Kaufmann, L.T., Steinbeisser, H. et al. Lack of phosphomannomutase 2 affects Xenopus laevis morphogenesis and the non-canonical Wnt5a/Ror2 signalling. J Inherit Metab Dis 38, 1137–1146 (2015). https://doi.org/10.1007/s10545-015-9874-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-015-9874-0

Keywords

Navigation