Skip to main content
Log in

Reversible infantile mitochondrial diseases

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Mitochondrial diseases are usually severe and progressive conditions; however, there are rare forms that show remarkable spontaneous recoveries. Two homoplasmic mitochondrial tRNA mutations (m.14674T>C/G in mt-tRNAGlu) have been reported to cause severe infantile mitochondrial myopathy in the first months of life. If these patients survive the first year of life by extensive life-sustaining measures they usually recover and develop normally. Another mitochondrial disease due to deficiency of the 5-methylaminomethyl-2-thiouridylate methyltransferase (TRMU) causes severe liver failure in infancy, but similar to the reversible mitochondrial myopathy, within the first year of life these infants may also recover completely. Partial recovery has been noted in some other rare forms of mitochondrial disease due to deficiency of mitochondrial tRNA synthetases and mitochondrial tRNA modifying enzymes. Here we summarize the clinical presentation of these unique reversible mitochondrial diseases and discuss potential molecular mechanisms behind the reversibility. Understanding these mechanisms may provide the key to treatments of potential broader relevance in mitochondrial disease, where for the majority of the patients no effective treatment is currently available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Baruffini E, Dallabona C, Invernizzi F et al (2013) MTO1 mutations are associated with hypertrophic cardiomyopathy and lactic acidosis and cause respiratory chain deficiency in humans and yeast. Hum Mutat 34:1501–1509

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boczonadi V, Smith PM, Pyle A et al (2013) Altered 2-thiouridylation impairs mitochondrial translation in reversible infantile respiratory chain deficiency. Hum Mol Genet 22:4602–4615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chrzanowska-Lightowlers ZM, Horvath R, Lightowlers RN (2010) 175th ENMC International Workshop: mitochondrial protein synthesis in health and disease, 25-27th June 2010, Naarden, The Netherlands. Neuromuscul Disord 21:142–147

    Article  PubMed  Google Scholar 

  • DiMauro S, Nicholson JF, Hays AP, Eastwood AB, Koenigsberger R, DeVivo DC (1981) Benign infantile mitochondrial myopathy due to reversible cytochrome c oxidase deficiency. Trans Am Neurol Assoc 106:205–207

    CAS  PubMed  Google Scholar 

  • DiMauro S, Nicholson JF, Hays AP, Eastwood AB, Papadimitriou A, Koenigsberger R, DeVivo DC (1983) Benign infantile mitochondrial myopathy due to reversible cytochrome c oxidase deficiency. Ann Neurol 14:226–234

    Article  CAS  PubMed  Google Scholar 

  • Gaignard P, Gonzales E, Ackermann O et al (2013) Mitochondrial infantile liver disease due to TRMU gene mutations: three New cases. JIMD Rep 11:117–123

    Article  PubMed Central  PubMed  Google Scholar 

  • Ghezzi D, Baruffini E, Haack TB et al (2012) Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis. Am J Hum Genet 90:1079–1087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guan MX, Yan Q, Li X et al (2006) Mutation in TRMU related to transfer RNA modification modulates the phenotypic expression of the deafness-associated mitochondrial 12S ribosomal RNA mutations. Am J Hum Genet 79:291–302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horvath R, Kemp JP, Tuppen HA et al (2009) Molecular basis of infantile reversible cytochrome c oxidase deficiency myopathy. Brain 132:3165–3174

    Article  PubMed Central  PubMed  Google Scholar 

  • Kemp JP, Smith PM, Pyle A et al (2011) Nuclear factors involved in mitochondrial translation cause a subgroup of combined respiratory chain deficiency. Brain 134:183–195

    Article  PubMed Central  PubMed  Google Scholar 

  • Lax NZ, Gnanapavan S, Dowson SJ et al (2013) Early-onset cataracts, spastic paraparesis, and ataxia caused by a novel mitochondrial tRNAGlu (MT-TE) gene mutation causing severe complex I deficiency: a clinical, molecular, and neuropathologic study. J Neuropathol Exp Neurol 72:164–175

    Article  CAS  PubMed  Google Scholar 

  • Levinger L, Mörl M, Florentz C (2004) Mitochondrial tRNA 3′ end metabolism and human disease. Nucleic Acids Res 32:5430–5441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Levonen AL, Lapatto R, Saksela M, Raivio KO (2000) Human cystathionine gamma-lyase: developmental and in vitro expression of two isoforms. Biochem J 347:291–295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Macmillan CJ, Shoubridge EA (1996) Mitochondrial DNA depletion: prevalence in a pediatric population referred for neurologic evaluation. Pediatr Neurol 14:203–210

    Article  CAS  PubMed  Google Scholar 

  • Mancuso M, Orsucci D, Logerfo A et al (2010) Oxidative stress biomarkers in mitochondrial myopathies, basally and after cysteine donor supplementation. J Neurol 257:774–781

    Article  CAS  PubMed  Google Scholar 

  • Mimaki M, Hatakeyama H, Komaki H et al (2010) Reversible infantile respiratory chain deficiency: a clinical and molecular study. Ann Neurol 68:845–854

    Article  CAS  PubMed  Google Scholar 

  • Morten KJ, Ashley N, Wijburg F et al (2007) Liver mtDNA content increases during development: a comparison of methods and the importance of age- and tissue-specific controls for the diagnosis of mtDNA depletion. Mitochondrion 7:386–395

    Article  CAS  PubMed  Google Scholar 

  • Nonaka I, Koga Y, Shikura K et al (1988) Muscle pathology in cytochrome c oxidase deficiency. Acta Neuropathol 77:152–160

    CAS  PubMed  Google Scholar 

  • Roodhooft AM, Van Acker KJ, Martin JJ, Ceuterick C, Scholte HR, Luyt-Houwen IE (1986) Benign mitochondrial myopathy with deficiency of NADH-CoQ reductase and cytochrome c oxidase. Neuropediatrics 17:221–226

    Article  CAS  PubMed  Google Scholar 

  • Rorbach J, Yusoff AA, Tuppen H et al (2008) Overexpression of human mitochondrial valyl tRNA synthetase can partially restore levels of cognate mt-tRNAVal carrying the pathogenic C25U mutation. Nucleic Acids Res 36:3065–3074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rötig A (2011) Human diseases with impaired mitochondrial protein synthesis. Biochim Biophys Acta 1807:1198–1205

    Article  PubMed  Google Scholar 

  • Russell O, Turnbull D (2014) Mitochondrial DNA disease-molecular insights and potential routes to a cure. Exp Cell Res 325:38–43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salmi H, Leonard JV, Rahman S, Lapatto R (2012) Plasma thiol status is altered in children with mitochondrial diseases. Scand J Clin Lab Invest 72:152–157

    Article  CAS  PubMed  Google Scholar 

  • Salo MK, Rapola J, Somer H, Pihko H, Koivikko M, Tritschler HJ, DiMauro S (1992) Reversible mitochondrial myopathy with cytochrome c oxidase deficiency. Arch Dis Child 67:1033–1035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sasarman F, Antonicka H, Horvath R, Shoubridge EA (2011) The 2-thiouridylase function of the human MTU1 (TRMU) enzyme is dispensable for mitochondrial translation. Hum Mol Genet 20:4634–4643

    Article  CAS  PubMed  Google Scholar 

  • Schara U, von Kleist-Retzow JC, Lainka E et al (2011) Acute liver failure with subsequent cirrhosis as the primary manifestation of TRMU mutations. J Inherit Metab Dis 34:197–201

    Article  PubMed  Google Scholar 

  • Smits P, Smeitink J, van den Heuvel L (2010) Mitochondrial translation and beyond: processes implicated in combined oxidative phosphorylation deficiencies. J Biomed Biotechnol 2010:737385

    Article  PubMed Central  PubMed  Google Scholar 

  • Steenweg ME, Ghezzi D, Haack T et al (2012) Leukoencephalopathy with thalamus and brainstem involvement and high lactate ‘LTBL’ caused by EARS2 mutations. Brain 135:1387–1394

    Article  PubMed  Google Scholar 

  • Sturman JA, Gaull G, Raiha NC (1970) Absence of cystathionase in human fetal liver: is cystine essential? Science 169:74–76

    Article  CAS  PubMed  Google Scholar 

  • Taanman JW, Hall RE, Tang C, Marusich MF, Kennaway NG, Capaldi RA (1993) Tissue distribution of cytochrome c oxidase isoforms in mammals. Characterization with monoclonal and polyclonal antibodies. Biochim Biophys Acta 1225:95–100

    Article  CAS  PubMed  Google Scholar 

  • Talim B, Pyle A, Griffin H et al (2013) Multisystem fatal infantile disease caused by a novel homozygous EARS2 mutation. Brain 136:e228

    Article  PubMed  Google Scholar 

  • Taylor RW, Pyle A, Griffin H, et al (2014) Whole exome sequencing defines the genetic basis of multiple mitochondrial respiratory chain complex deficiency. JAMA in press June 2014

  • Tritschler HJ, Bonilla E, Lombes A et al (1991) Differential diagnosis of fatal and benign cytochrome c oxidase-deficient myopathies of infancy: an immunohistochemical approach. Neurology 41:300–305

    Article  CAS  PubMed  Google Scholar 

  • Tuppen HA, Blakely EL, Turnbull DM, Taylor RW (2010) Mitochondrial DNA mutations and human disease. Biochim Biophys Acta 1797:113–128

    Article  CAS  PubMed  Google Scholar 

  • Uusimaa J, Jungbluth H, Fratter C et al (2011) Reversible infantile respiratory chain deficiency is a unique, genetically heterogenous mitochondrial disease. J Med Genet 48:660–668

    Article  CAS  PubMed  Google Scholar 

  • Viscomi C, Burlina AB, Dweikat I et al (2010) Combined treatment with oral metronidazole and N-acetylcysteine is effective in ethylmalonic encephalopathy. Nat Med 16:869–871

    Article  CAS  PubMed  Google Scholar 

  • Wada H, Woo M, Nishio H et al (1996) Vascular involvement in benign infantile mitochondrial myopathy caused by reversible cytochrome c oxidase deficiency. Brain Dev 18:263–268

    Article  CAS  PubMed  Google Scholar 

  • Zeharia A, Shaag A, Pappo O et al (2009) Acute infantile liver failure due to mutations in the TRMU gene. Am J Hum Genet 85:401–407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zeviani M, Peterson P, Servidei S, Bonilla E, DiMauro S (1987) Benign reversible muscle cytochrome c oxidase deficiency: a second case. Neurology 37:64–67

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

RH was supported by the Medical Research Council (UK) (G1000848) and the European Research Council (309548).

Compliance with ethics guidelines

Conflict of interest

None.

Human and animal rights and informed consent

All procedures followed were in accordance with the ethical standards of the responsiblecommittee on human experimentation (NRES Committee Yorkshire & The Humber-LeedsBradford) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consentwas obtained from all patients from our centre for being included in the study. This article does not contain any studies with animalsubjects performed by the any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Horvath.

Additional information

Communicated by: Shamima Rahman

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Laboratory and muscle biopsy results of patients with RIRCD (DOCX 27 kb)

Supplementary Table 2

Laboratory and biopsy results of patients with TRMU deficiency (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boczonadi, V., Bansagi, B. & Horvath, R. Reversible infantile mitochondrial diseases. J Inherit Metab Dis 38, 427–435 (2015). https://doi.org/10.1007/s10545-014-9784-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-014-9784-6

Keywords

Navigation