Skip to main content
Log in

Type I glycogen storage diseases: disorders of the glucose-6-phosphatase/glucose-6-phosphate transporter complexes

  • Glycogenoses
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Disorders of the glucose-6-phosphatase (G6Pase)/glucose-6-phosphate transporter (G6PT) complexes consist of three subtypes: glycogen storage disease type Ia (GSD-Ia), deficient in the liver/kidney/intestine-restricted G6Pase-α (or G6PC); GSD-Ib, deficient in a ubiquitously expressed G6PT (or SLC37A4); and G6Pase-β deficiency or severe congenital neutropenia syndrome type 4 (SCN4), deficient in the ubiquitously expressed G6Pase-β (or G6PC3). G6Pase-α and G6Pase-β are glucose-6-phosphate (G6P) hydrolases with active sites lying inside the endoplasmic reticulum (ER) lumen and as such are dependent upon the G6PT to translocate G6P from the cytoplasm into the lumen. The tissue expression profiles of the G6Pase enzymes dictate the disease's phenotype. A functional G6Pase-α/G6PT complex maintains interprandial glucose homeostasis, while a functional G6Pase-β/G6PT complex maintains neutrophil/macrophage energy homeostasis and functionality. G6Pase-β deficiency is not a glycogen storage disease but biochemically it is a GSD-I related syndrome (GSD-Irs). GSD-Ia and GSD-Ib patients manifest a common metabolic phenotype of impaired blood glucose homeostasis not shared by GSD-Irs. GSD-Ib and GSD-Irs patients manifest a common myeloid phenotype of neutropenia and neutrophil/macrophage dysfunction not shared by GSD-Ia. While a disruption of the activity of the G6Pase-α/G6PT complex readily explains why GSD-Ia and GSD-Ib patients exhibit impaired glucose homeostasis, the basis for neutropenia and myeloid dysfunction in GSD-Ib and GSD-Irs are only now starting to be understood. Animal models of all three disorders are now available and are being exploited to both delineate the disease more precisely and develop new treatment approaches, including gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Annabi B, Hiraiwa H, Mansfield BC et al (1998) The gene for glycogen-storage disease type 1b maps to chromosome 11q23. Am J Hum Genet 62(2):400–405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Banka S, Newman WG (2013) A clinical and molecular review of ubiquitous glucose-6-phosphatase deficiency caused by G6PC3 mutations. Orphanet J Rare Dis 8:84

    Article  PubMed Central  PubMed  Google Scholar 

  • Boers SJ, Visser G, Smit PG, Fuchs SA (2014) Liver transplantation in glycogen storage disease type I. Orphanet J Rare Dis 9(1):47

    Article  PubMed Central  PubMed  Google Scholar 

  • Boztug K, Appaswamy G, Ashikov A et al (2009) A syndrome with congenital neutropenia and mutations in G6PC3. N Engl J Med 360(1):32–43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen LY, Shieh JJ, Lin B et al (2003) Impaired glucose homeostasis, neutrophil trafficking and function in mice lacking the glucose-6-phosphate transporter. Hum Mol Genet 12(19):2547–2558

    Article  CAS  PubMed  Google Scholar 

  • Chen SY, Pan CJ, Nandigama K, Mansfield BC, Ambudkar SV, Chou JY (2008) The glucose-6-phosphate transporter is a phosphate-linked antiporter deficient in glycogen storage disease type Ib and Ic. FASEB J 22(7):2206–2213

    Article  CAS  PubMed  Google Scholar 

  • Cheung YY, Kim SY, Yiu WH et al (2007) Impaired neutrophil activity and increased susceptibility to bacterial infection in mice lacking glucose-6-phosphatase-beta. J Clin Invest 117(3):784–793

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chou JY, Mansfield BC (2008) Mutations in the glucose-6-phosphatase-alpha (G6PC) gene that cause type Ia glycogen storage disease. Hum Mutat 29(7):921–930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chou JY, Mansfield BC (2011) Recombinant AAV-directed gene therapy for type I glycogen storage diseases. Expert Opin Biol Ther 11(8):1011–1024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chou JY, Mansfield BC (2014) The SLC37 family of sugar-phosphate/phosphate exchangers. Curr Top Membr 73:357–382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chou JY, Matern D, Mansfield BC, Chen YT (2002) Type I glycogen storage diseases: disorders of the glucose-6-phosphatase complex. Curr Mol Med 2(2):121–143

    Article  CAS  PubMed  Google Scholar 

  • Chou JY, Jun HS, Mansfield BC (2010) Glycogen storage disease type I and G6Pase-beta deficiency: etiology and therapy. Nat Rev Endocrinol 6(12):676–688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ekstein J, Rubin BY, Anderson SL et al (2004) Mutation frequencies for glycogen storage disease Ia in the Ashkenazi Jewish population. Am J Med Genet A 129A(2):162–164

    Article  PubMed  Google Scholar 

  • Franco LM, Krishnamurthy V, Bali D et al (2005) Hepatocellular carcinoma in glycogen storage disease type Ia: a case series. J Inherit Metab Dis 28(2):153–162

    Article  CAS  PubMed  Google Scholar 

  • Gerin I, Veiga-da-Cunha M, Achouri Y, Collet JF, Van Schaftingen E (1997) Sequence of a putative glucose 6-phosphate translocase, mutated in glycogen storage disease type Ib. FEBS Lett 419(2–3):235–238

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Shieh JJ, Pan CJ, Sun MS, Chou JY (2002) The catalytic center of glucose-6-phosphatase. HIS176 is the nucleophile forming the phosphohistidine-enzyme intermediate during catalysis. J Biol Chem 277(36):32837–32842

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Shieh JJ, Pan CJ, Chou JY (2004) Histidine 167 is the phosphate acceptor in glucose-6-phosphatase-beta forming a phosphohistidine enzyme intermediate during catalysis. J Biol Chem 279(13):12479–12483

    Article  CAS  PubMed  Google Scholar 

  • Hiraiwa H, Pan CJ, Lin B, Moses SW, Chou JY (1999) Inactivation of the glucose 6-phosphate transporter causes glycogen storage disease type 1b. J Biol Chem 274(9):5532–5536

    Article  CAS  PubMed  Google Scholar 

  • Jun HS, Lee YM, Cheung YY et al (2010) Lack of glucose recycling between endoplasmic reticulum and cytoplasm underlies cellular dysfunction in glucose-6-phosphatase-beta-deficient neutrophils in a congenital neutropenia syndrome. Blood 116(15):2783–2792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jun HS, Lee YM, Song KD, Mansfield BC, Chou JY (2011) G-CSF improves murine G6PC3-deficient neutrophil function by modulating apoptosis and energy homeostasis. Blood 117(14):3881–3892

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jun HS, Cheung YY, Lee YM, Mansfield BC, Chou JY (2012) Glucose-6-phosphatase-beta, implicated in a congenital neutropenia syndrome, is essential for macrophage energy homeostasis and functionality. Blood 119(17):4047–4055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jun HS, Weinstein DA, Lee YM, Mansfield BC, Chou JY (2014) Molecular mechanisms of neutrophil dysfunction in glycogen storage disease type Ib. Blood in press

  • Kilpatrick L, Garty BZ, Lundquist KF et al (1990) Impaired metabolic function and signaling defects in phagocytic cells in glycogen storage disease type 1b. J Clin Invest 86(1):196–202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim SY, Jun HS, Mead PA, Mansfield BC, Chou JY (2008) Neutrophil stress and apoptosis underlie myeloid dysfunction in glycogen storage disease type Ib. Blood 111(12):5704–5711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koeberl DD, Pinto C, Sun B et al. (2008) AAV vector-mediated reversal of hypoglycemia in canine and murine glycogen storage disease type Ia. Mol Ther 16(4):665–672

  • Kishnani PS, Faulkner E, VanCamp S et al (2001) Canine model and genomic structural organization of glycogen storage disease type Ia (GSD Ia). Vet Pathol 38(1):83–91

    Article  CAS  PubMed  Google Scholar 

  • Koeberl DD, Kishnani PS, Bali D, Chen YT (2009) Emerging therapies for glycogen storage disease type I. Trends Endocrinol Metab 20:252–258

    Article  CAS  PubMed  Google Scholar 

  • Kuijpers TW, Maianski NA, Tool AT et al (2003) Apoptotic neutrophils in the circulation of patients with glycogen storage disease type 1b (GSD1b). Blood 101(12):5021–5024

    Article  CAS  PubMed  Google Scholar 

  • Lee YM, Jun HS, Pan CJ et al (2012) Prevention of hepatocellular adenoma and correction of metabolic abnormalities in murine glycogen storage disease type Ia by gene therapy. Hepatology 56(5):1719–1729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee YM, Pan CJ, Koeberl DD, Mansfield BC, Chou JY (2013) The upstream enhancer elements of the G6PC promoter are critical for optimal G6PC expression in murine glycogen storage disease type Ia. Mol Genet Metab 110(3):275–280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lei KJ, Shelly LL, Pan CJ, Sidbury JB, Chou JY (1993) Mutations in the glucose-6-phosphatase gene that cause glycogen-storage-disease type-1a. Science 262(5133):580–583

    Article  CAS  PubMed  Google Scholar 

  • Lei KJ, Chen H, Pan CJ et al (1996) Glucose-6-phosphatase dependent substrate transport in the glycogen storage disease type-1a mouse. Nat Genet 13(2):203–209

    Article  CAS  PubMed  Google Scholar 

  • Lin B, Pan CJ, Chou JY (2000) Human variant glucose-6-phosphate transporter is active in microsomal transport. Hum Genet 107(5):526–529

    Article  CAS  PubMed  Google Scholar 

  • Martin CC, Oeser JK, Svitek CA, Hunter SI, Hutton JC, O'Brien RM (2002) Identification and characterization of a human cDNA and gene encoding a ubiquitously expressed glucose-6-phosphatase catalytic subunit-related protein. J Mol Endocrinol 29(2):205–222

    Article  CAS  PubMed  Google Scholar 

  • Matern D, Seydewitz HH, Bali D, Lang C, Chen YT (2002) Glycogen storage disease type I: diagnosis and phenotype/genotype correlation. Eur J Pediatr 161(Suppl 1):S10–S19

    Article  CAS  PubMed  Google Scholar 

  • McCawley LJ, Korchak HM, Cutilli JR et al (1993) Interferon-gamma corrects the respiratory burst defect in vitro in monocyte-derived macrophages from glycogen storage disease type 1b patients. Pediatr Res 34(3):265–269

    Article  CAS  PubMed  Google Scholar 

  • McDermott DH, De Ravin SS, Jun HS et al (2010) Severe congenital neutropenia resulting from G6PC3 deficiency with increased neutrophil CXCR4 expression and myelokathexis. Blood 116(15):2793–2802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Michelfelder S, Trepel M (2009) Adeno-associated viral vectors and their redirection to cell-type specific receptors. Adv Genet 67:29–60

    Article  CAS  PubMed  Google Scholar 

  • Mutel E, Abdul-Wahed A, Ramamonjisoa N et al (2011) Targeted deletion of liver glucose-6 phosphatase mimics glycogen storage disease type 1a including development of multiple adenomas. J Hepatol 54(3):529–537

    Article  CAS  PubMed  Google Scholar 

  • Pan CJ, Lei KJ, Annabi B, Hemrika W, Chou JY (1998) Transmembrane topology of glucose-6-phosphatase. J Biol Chem 273(11):6144–6148

    Article  CAS  PubMed  Google Scholar 

  • Pan CJ, Lin B, Chou JY (1999) Transmembrane topology of human glucose 6-phosphate transporter. J Biol Chem 274(20):13865–13869

    Article  CAS  PubMed  Google Scholar 

  • Peng WT, Pan CJ, Lee EJ, Westphal H, Chou JY (2009) Generation of mice with a conditional allele for G6pc. Genesis 47(9):590–594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pierre G, Chakupurakal G, McKiernan P et al (2008) Bone marrow transplantation in glycogen storage disease type 1b. J Pediatr 152(2):286–288

    Article  CAS  PubMed  Google Scholar 

  • Rake JP, Visser G, Labrune P, Leonard JV, Ullrich K, Smit GP (2002) Glycogen storage disease type I: diagnosis, management, clinical course and outcome. Results of the European Study on Glycogen Storage Disease Type I (ESGSD I). Eur J Pediatr 161(Suppl 1):S20–S34

    Article  CAS  PubMed  Google Scholar 

  • Rocca CJ, Ur SN, Harrison F, Cherqui S (2014) rAAV9 combined with renal vein injection is optimal for kidney-targeted gene delivery: conclusion of a comparative study. Gene Ther 21(6):618–628

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shah KK, O'Dell SD (2013) Effect of dietary interventions in the maintenance of normoglycaemia in glycogen storage disease type 1a: a systematic review and meta-analysis. J Hum Nutr Diet 26(4):329–339

    Article  CAS  PubMed  Google Scholar 

  • Shieh JJ, Terzioglu M, Hiraiwa H et al (2002) The molecular basis of glycogen storage disease type 1a: structure and function analysis of mutations in glucose-6-phosphatase. J Biol Chem 277(7):5047–5053

    Article  CAS  PubMed  Google Scholar 

  • Shieh JJ, Pan CJ, Mansfield BC, Chou JY (2003) A glucose-6-phosphate hydrolase, widely expressed outside the liver, can explain age-dependent resolution of hypoglycemia in glycogen storage disease type Ia. J Biol Chem 278(47):47098–47103

    Article  CAS  PubMed  Google Scholar 

  • Visser G, Rake JP, Labrune P et al (2002) Granulocyte colony-stimulating factor in glycogen storage disease type 1b. Results of the European Study on Glycogen Storage Disease Type 1. Eur J Pediatr 161(Suppl 1):S83–S87

    Article  CAS  PubMed  Google Scholar 

  • Weinstein DA, Correia CE, Conlon T et al (2010) Adeno-associated virus-mediated correction of a canine model of glycogen storage disease type Ia. Hum Gene Ther 21(7):903–910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yiu WH, Lee YM, Peng WT et al (2010) Complete normalization of hepatic G6PC deficiency in murine glycogen storage disease type Ia using gene therapy. Mol Ther 18(6):1076–1084

  • Zincarelli C, Soltys S, Rengo G, Rabinowitz JE (2008) Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 16(6):1073–1080

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This research was supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health.

Compliance with ethics guidelines

Conflict of Interest

Janice Y. Chou, Hyun Sik Jun, and Brian C. Mansfield declare that they have no conflict of interest.

Informed Consent

This article does not contain any studies with human subjects performed by any of the authors.

Animal Rights

All institutional and national guidelines for the care and use of laboratory animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janice Y. Chou.

Additional information

Communicated by: Alberto B Burlina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chou, J.Y., Jun, H.S. & Mansfield, B.C. Type I glycogen storage diseases: disorders of the glucose-6-phosphatase/glucose-6-phosphate transporter complexes. J Inherit Metab Dis 38, 511–519 (2015). https://doi.org/10.1007/s10545-014-9772-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-014-9772-x

Keywords

Navigation