Skip to main content
Log in

Non-specific accumulation of glycosphingolipids in GNE myopathy

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Background

UDP-GlcNAc 2-epimerase/ManNAc 6-kinase (GNE) is a bifunctional enzyme responsible for the first committed steps in the synthesis of sialic acid, a common terminal monosaccharide in both protein and lipid glycosylation. GNE mutations are responsible for a rare autosomal recessive neuromuscular disorder, GNE myopathy (also called hereditary inclusion body myopathy). The connection between the impairment of sialic acid synthesis and muscle pathology in GNE myopathy remains poorly understood.

Methods

Glycosphingolipid (GSL) analysis was performed by HPLC in multiple models of GNE myopathy, including patients’ fibroblasts and plasma, control fibroblasts with inhibited GNE epimerase activity through a novel imino sugar, and tissues of GneM712T/M712T knock-in mice.

Results

Not only neutral GSLs, but also sialylated GSLs, were significantly increased compared to controls in all tested models of GNE myopathy. Treatment of GNE myopathy fibroblasts with N-acetylmannosamine (ManNAc), a sialic acid precursor downstream of GNE epimerase activity, ameliorated the increased total GSL concentrations.

Conclusion

GNE myopathy models have increased total GSL concentrations. ManNAc supplementation results in decrease of GSL levels, linking abnormal increase of total GSLs in GNE myopathy to defects in the sialic acid biosynthetic pathway. These data advocate for further exploring GSL concentrations as an informative biomarker, not only for GNE myopathy, but also for other disorders of sialic acid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

2-AA:

Anthranilic acid

CMP:

Cytidine monophosphate

CMP-SA:

CMP-sialic acid

CTP:

Cytidine triphosphate

DMRV:

Distal myopathy with rimmed vacuoles

ECL:

Enhanced chemiluminescence

FCS:

Fetal calf serum

GlcNAc:

N-acetyl glucosamine

GNE:

UDP-GlcNAc 2-epimerase/ManNAc 6-kinase

GSL:

Glycosphingolipid

HIBM:

Hereditary inclusion body myopathy

HPLC:

High-performance liquid chromatography

HRP:

Horseradish peroxidase

ManNAc:

N-acetylmannosamine

MES:

2-(N-morpholino)ethanesulfonic acid

Neu5AC:

N-acetylneuraminic acid or sialic acid

NP-HPLC:

Normal-phase HPLC

OMIM:

Online mendelian inheritance in man

PVDF:

Polyvinylidene fluoride

RP-HPLC:

Reverse-phase HPLC

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SEM:

Standard error of the mean

THF:

Tetrahydrofuran

UDP:

Uridine diphosphate

XMEA:

X-linked myopathy with excessive autophagy

References

  • Al-Rawi S, Hinderlich S, Reutter W, Giannis A (2004) Synthesis and biochemical properties of reversible inhibitors of UDP-N-acetylglucosamine 2-epimerase. Angew Chem Int Ed Engl 43:4366–4370

    Article  PubMed  CAS  Google Scholar 

  • Alonzi DS, Butters TD (2011) Therapeutic targets for inhibitors of glycosylation. Chimia (Aarau) 65:35–39

    Article  CAS  Google Scholar 

  • Amsili S, Zer H, Hinderlich S et al (2008) UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) binds to alpha-actinin 1: novel pathways in skeletal muscle? PLoS One 3:e2477

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Argov Z, Yarom R (1984) “Rimmed vacuole myopathy” sparing the quadriceps. A unique disorder in Iranian Jews. J Neurol Sci 64:33–43

    Article  PubMed  CAS  Google Scholar 

  • Askanas V, Alvarez RB, Engel WK (1993) beta-Amyloid precursor epitopes in muscle fibers of inclusion body myositis. Ann Neurol 34:551–560

    Article  PubMed  CAS  Google Scholar 

  • Askanas V, Engel WK (1995) New advances in the understanding of sporadic inclusion-body myositis and hereditary inclusion-body myopathies. Curr Opin Rheumatol 7:486–496

    Article  PubMed  CAS  Google Scholar 

  • Butters TD, Dwek RA, Platt FM (2000) Inhibition of glycosphingolipid biosynthesis: application to lysosomal storage disorders. Chem Rev 100:4683–4696

    Article  PubMed  CAS  Google Scholar 

  • Chou HH, Takematsu H, Diaz S et al (1998) A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc Natl Acad Sci U S A 95:11751–11756

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Eisenberg I, Avidan N, Potikha T et al (2001) The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy. Nat Genet 29:83–87

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg I, Grabov-Nardini G, Hochner H et al (2003) Mutations spectrum of GNE in hereditary inclusion body myopathy sparing the quadriceps. Hum Mutat 21:99

    Article  PubMed  CAS  Google Scholar 

  • Eskelinen EL (2006) Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol Aspects Med 27:495–502

    Article  PubMed  CAS  Google Scholar 

  • Galeano B, Klootwijk R, Manoli I et al (2007) Mutation in the key enzyme of sialic acid biosynthesis causes severe glomerular proteinuria and is rescued by N-acetylmannosamine. J Clin Invest 117:1585–1594

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ghaderi D, Strauss HM, Reinke S et al (2007) Evidence for dynamic interplay of different oligomeric states of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase by biophysical methods. J Mol Biol 369:746–758

    Article  PubMed  CAS  Google Scholar 

  • Hinderlich S, Berger M, Keppler OT, Pawlita M, Reutter W (2001) Biosynthesis of N-acetylneuraminic acid in cells lacking UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. Biol Chem 382:291–297

    Article  PubMed  CAS  Google Scholar 

  • Hinderlich S, Stasche R, Zeitler R, Reutter W (1997) A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. Purification and characterization of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. J Biol Chem 272:24313–24318

    Article  PubMed  CAS  Google Scholar 

  • Huizing M, Krasnewich DM (2009) Hereditary inclusion body myopathy: a decade of progress. Biochim Biophys Acta 1792:881–887

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Huwiler A, Kolter T, Pfeilschifter J, Sandhoff K (2000) Physiology and pathophysiology of sphingolipid metabolism and signaling. Biochim Biophys Acta 1485:63–99

    Article  PubMed  CAS  Google Scholar 

  • Jones MB, Teng H, Rhee JK et al (2004) Characterization of the cellular uptake and metabolic conversion of acetylated N-acetylmannosamine (ManNAc) analogues to sialic acids. Biotechnol Bioeng 85:394–405

    Article  PubMed  CAS  Google Scholar 

  • Kakani S, Yardeni T, Poling J et al (2012) The Gne M712T mouse as a model for human glomerulopathy. Am J Pathol 180:1431–1440

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Keppler OT, Hinderlich S, Langner J et al (1999) UDP-GlcNAc 2-epimerase: a regulator of cell surface sialylation. Science 284:1372–1376

    Article  PubMed  CAS  Google Scholar 

  • Kershaw DB, Beck SG, Wharram BL et al (1997) Molecular cloning and characterization of human podocalyxin-like protein. Orthologous relationship to rabbit PCLP1 and rat podocalyxin. J Biol Chem 272:15708–15714

    Article  PubMed  CAS  Google Scholar 

  • Krause S, Hinderlich S, Amsili S et al (2005) Localization of UDP-GlcNAc 2-epimerase/ManAc kinase (GNE) in the Golgi complex and the nucleus of mammalian cells. Exp Cell Res 304:365–379

    Article  PubMed  CAS  Google Scholar 

  • Li H, Marcelo F, Bello C et al (2009) Design and synthesis of acetamido tri- and tetra-hydroxyazepanes: potent and selective beta-N-acetylhexosaminidase inhibitors. Bioorg Med Chem 17:5598–5604

    Article  PubMed  CAS  Google Scholar 

  • Lucka L, Krause M, Danker K, Reutter W, Horstkorte R (1999) Primary structure and expression analysis of human UDP-N-acetyl-glucosamine-2-epimerase/N-acetylmannosamine kinase, the bifunctional enzyme in neuraminic acid biosynthesis. FEBS Lett 454:341–344

    Article  PubMed  CAS  Google Scholar 

  • Malicdan MC, Nishino I (2012) Autophagy in lysosomal myopathies. Brain Pathol 22:82–88

    Article  PubMed  Google Scholar 

  • Malicdan MC, Noguchi S, Hayashi YK, Nonaka I, Nishino I (2009) Prophylactic treatment with sialic acid metabolites precludes the development of the myopathic phenotype in the DMRV-hIBM mouse model. Nat Med 15:690–695

    Article  PubMed  CAS  Google Scholar 

  • Malicdan MC, Noguchi S, Nishino I (2007a) Autophagy in a mouse model of distal myopathy with rimmed vacuoles or hereditary inclusion body myopathy. Autophagy 3:396–398

    PubMed  CAS  Google Scholar 

  • Malicdan MC, Noguchi S, Nonaka I, Hayashi YK, Nishino I (2007b) A Gne knockout mouse expressing human GNE D176V mutation develops features similar to distal myopathy with rimmed vacuoles or hereditary inclusion body myopathy. Hum Mol Genet 16:2669–2682

    Article  PubMed  CAS  Google Scholar 

  • Malicdan MC, Noguchi S, Nonaka I, Saftig P, Nishino I (2008) Lysosomal myopathies: an excessive build-up in autophagosomes is too much to handle. Neuromuscul Disord 18:521–529

    Article  PubMed  Google Scholar 

  • Malicdan MC, Noguchi S, Tokutomi T et al (2012) Peracetylated N-acetylmannosamine, a synthetic sugar molecule, efficiently rescues muscle phenotype and biochemical defects in mouse model of sialic acid-deficient myopathy. J Biol Chem 287:2689–2705

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nemunaitis G, Jay CM, Maples PB et al (2011) Hereditary inclusion body myopathy: single patient response to intravenous dosing of GNE gene Lipoplex. Hum Gene Ther 22:1331–1341

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nemunaitis G, Maples PB, Jay C et al (2010) Hereditary inclusion body myopathy: single patient response to GNE gene Lipoplex therapy. J Gene Med 12:403–412

    Article  PubMed  CAS  Google Scholar 

  • Neville DC, Alonzi DS, Butters TD (2012) Hydrophilic interaction liquid chromatography of anthranilic acid-labelled oligosaccharides with a 4-aminobenzoic acid ethyl ester-labelled dextran hydrolysate internal standard. J Chromatogr A 1233:66–70

    Article  PubMed  CAS  Google Scholar 

  • Niethamer TK, Yardeni T, Leoyklang P et al (2012) Oral monosaccharide therapies to reverse renal and muscle hyposialylation in a mouse model of GNE myopathy. Mol Genet Metab 107:748–755

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nishino I (2006) Autophagic vacuolar myopathy. Semin Pediatr Neurol 13:90–95

    Article  PubMed  Google Scholar 

  • Nishino I, Noguchi S, Murayama K et al (2002) Distal myopathy with rimmed vacuoles is allelic to hereditary inclusion body myopathy. Neurology 59:1689–1693

    Article  PubMed  CAS  Google Scholar 

  • Noguchi S, Keira Y, Murayama K et al (2004) Reduction of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase activity and sialylation in distal myopathy with rimmed vacuoles. J Biol Chem 279:11402–11407

    Article  PubMed  CAS  Google Scholar 

  • Nonaka I, Murakami N, Suzuki Y, Kawai M (1998) Distal myopathy with rimmed vacuoles. Neuromuscul Disord 8:333–337

    Article  PubMed  CAS  Google Scholar 

  • Nonaka I, Noguchi S, Nishino I (2005) Distal myopathy with rimmed vacuoles and hereditary inclusion body myopathy. Curr Neurol Neurosci Rep 5:61–65

    Article  PubMed  CAS  Google Scholar 

  • Nonaka I, Sunohara N, Ishiura S, Satoyoshi E (1981) Familial distal myopathy with rimmed vacuole and lamellar (myeloid) body formation. J Neurol Sci 51:141–155

    Article  PubMed  CAS  Google Scholar 

  • Paccalet T, Coulombe Z, Tremblay JP (2010) Ganglioside GM3 levels are altered in a mouse model of HIBM: GM3 as a cellular marker of the disease. PLoS One 5:e10055

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ramachandran N, Munteanu I, Wang P et al (2009) VMA21 deficiency causes an autophagic myopathy by compromising V-ATPase activity and lysosomal acidification. Cell 137:235–246

    Article  PubMed  CAS  Google Scholar 

  • Schauer R (2009) Sialic acids as regulators of molecular and cellular interactions. Curr Opin Struct Biol 19:507–514

    Article  PubMed  CAS  Google Scholar 

  • Schwarzkopf M, Knobeloch KP, Rohde E et al (2002) Sialylation is essential for early development in mice. Proc Natl Acad Sci U S A 99:5267–5270

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sparks SE, Ciccone C, Lalor M et al (2005) Use of a cell-free system to determine UDP-N-acetylglucosamine 2-epimerase and N-acetylmannosamine kinase activities in human hereditary inclusion body myopathy. Glycobiology 15:1102–1110

    Article  PubMed  CAS  Google Scholar 

  • Valles-Ayoub Y, Esfandiarifard S, Sinai P et al (2012) Serum neural cell adhesion molecule is hyposialylated in hereditary inclusion body myopathy. Genet Test Mol Biomarkers 16:313–317

    Article  PubMed  CAS  Google Scholar 

  • Varki A (1997) Sialic acids as ligands in recognition phenomena. FASEB J 11:248–255

    PubMed  CAS  Google Scholar 

  • Varki A (2008) Sialic acids in human health and disease. Trends Mol Med 14:351–360

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang Z, Sun Z, Li AV, Yarema KJ (2006) Roles for UDP-GlcNAc 2-epimerase/ManNAc 6-kinase outside of sialic acid biosynthesis: modulation of sialyltransferase and BiP expression, GM3 and GD3 biosynthesis, proliferation, and apoptosis, and ERK1/2 phosphorylation. J Biol Chem 281:27016–27028

    Article  PubMed  CAS  Google Scholar 

  • Weidemann W, Stelzl U, Lisewski U et al (2006) The collapsin response mediator protein 1 (CRMP-1) and the promyelocytic leukemia zinc finger protein (PLZF) bind to UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE), the key enzyme of sialic acid biosynthesis. FEBS Lett 580:6649–6654

    Article  PubMed  CAS  Google Scholar 

  • Wennekes T, van den Berg RJ, Boot RG et al (2009) Glycosphingolipids–nature, function, and pharmacological modulation. Angew Chem Int Ed Engl 48:8848–8869

    Article  PubMed  CAS  Google Scholar 

  • Yardeni T, Choekyi T, Jacobs K et al (2011) Identification, tissue distribution, and molecular modeling of novel human isoforms of the key enzyme in sialic acid synthesis, UDP-GlcNAc 2-epimerase/ManNAc kinase. Biochemistry 50:8914–8925

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Raymond Dwek for his support (Oxford Glycobioloby Institute). We thank Shelley Hoogstraten-Miller and Theresa Calhoun (NHGRI, NIH) for their skilled assistance with mouse maintenance and thank Carla Ciccone (NHGRI, NIH) for her expert laboratory work. We thank the HIBM Research Group (Encino, CA, USA) for providing the Gne M712T knock-in mouse model.

Funding

This work was supported by the Oxford Glycobiology Institute, Oxford, UK (K.A.P., D.S.A., N.V.K., and T.D.B.), l’Association “Vaincre les maladies lysosomales” (Y.B.) and the Intramural Research Programs of the National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA (K.A.P., T.Y., P.L., H.D., W.A.G., and M.H.). The authors confirm independence from the sponsors; the content of the article has not been influenced by the sponsors.

Conflict of interests

Katherine A. Patzel, Tal Yardeni, Erell Le Poëc-Celic, Dominic S. Alonzi, Nikolay V. Kukushkin, Bixue Xu, Yongmin Zhang, Matthieu Sollogoub, Yves Blériot, and Terry D. Butters declare that they have no conflict of interest.

Marjan Huizing and William A. Gahl are co-inventors on patent PCT/US2008/006895 “N-acetyl mannosamine as a therapeutic agent”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marjan Huizing or Terry D. Butters.

Additional information

Communicated by: Eva Morava

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 956 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patzel, K.A., Yardeni, T., Le Poëc-Celic, E. et al. Non-specific accumulation of glycosphingolipids in GNE myopathy. J Inherit Metab Dis 37, 297–308 (2014). https://doi.org/10.1007/s10545-013-9655-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-013-9655-6

Keywords

Navigation