Skip to main content
Log in

Silicon membranes for extracorporeal life support: a comparison of design and fabrication methodologies

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Extracorporeal life support is an advanced therapy that circulates blood through an extracorporeal oxygenator, performing gas exchange outside the body. However, its use is limited by severe complications, including bleeding, clotting, and hemolysis. Semiconductor silicon-based membranes have emerged as an alternative to traditional hollow-fiber semipermeable membranes. These membranes offer excellent gas exchange efficiency and the potential to increase hemocompatibility by improving flow dynamics. In this work, we evaluate two next-generation silicon membrane designs, which are intended to be mechanically robust and efficient in gas exchange, while simultaneously reducing fabrication complexity. The “window” design features 10 µm pores on one side and large windows on the back side. The “cavern” design also uses 10 µm pores but contains a network of interconnected buried caverns to distribute the sweep gas from smaller inlet holes. Both designs were shown to be technically viable and able to be reproducibly fabricated. In addition, they both were mechanically robust and withstood 30 psi of transmembrane pressure without breakage or bubbling. At low sweep gas pressures, gas transfer efficiency was similar, with the partial pressure of oxygen in water increasing by 10.7 ± 2.3 mmHg (mean ± standard deviation) and 13.6 ± 1.9 mmHg for the window and cavern membranes, respectively. Gas transfer efficiency was also similar at higher pressures. At 10 psi, oxygen tension increased by 16.8 ± 5.7 mmHg (window) and 18.9 ± 1.3 mmHg (cavern). We conclude that silicon membranes featuring a 10 µm pore size can simplify the fabrication process and improve mechanical robustness while maintaining excellent efficiency.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • E.N. Abada, B.J. Feinberg, S. Roy, Biomed. Microdevices. 20, 1 (2018)

    Article  Google Scholar 

  • R.H. Bartlett, D.W. Roloff, R.G. Cornell, A.F. Andrews, P.W. Dillon, J.B. Zwischenberger, Pediatrics. 76, 479–487 (1985)

    Article  Google Scholar 

  • D.G. Blauvelt, E.N. Abada, P. Oishi, S. Roy, Artif. Organs. 45, 205–221 (2021)

    Article  Google Scholar 

  • H.J. Dalton, P. Garcia-Filion, R. Holubkov, F.W. Moler, T. Shanley, S. Heidemann, K. Meert, R.A. Berg, J. Berger, J. Carcillo, C. Newth, R. Harrison, A. Doctor, P. Rycus, J.M. Dean, T. Jenkins, C. Nicholson, Pediatr. Crit. Care. Med. 16, 167 (2015)

    Article  Google Scholar 

  • A. Dharia, E. Abada, B. Feinberg, T. Yeager, W. Moses, J. Park, C. Blaha, N. Wright, B. Padilla, S. Roy, Artif. Organs. 42, 166 (2018)

    Article  Google Scholar 

  • ELSO, International Summary of Statistics. (Extracorporeal Life Support Organization, Ann Arbor, 2022), https://www.elso.org/registry/internationalsummaryandreports/internationalsummary.aspx. Accessed 12 January 2022

  • B.J. Feinberg, J.C. Hsiao, J. Park, A.L. Zydney, W.H. Fissell, S. Roy, J. Memb. Sci. 536, 44 (2017)

    Article  Google Scholar 

  • C.C. Helms, M. Marvel, W. Zhao, M. Stahle, R. Vest, G.J. Kato, J.S. Lee, G. Christ, M.T. Gladwin, R.R. Hantgan, D.B. Kim-Shapiro, J. Thromb. Haemost. 11, 2148–2154 (2013)

    Article  Google Scholar 

  • D.M. Hoganson, J.L. Anderson, E.F. Weinberg, E.J. Swart, B.K. Orrick, J.T. Borenstein, J.P. Vacanti, J. Thorac. Cardiovasc. Surg. 140, 990 (2010)

    Article  Google Scholar 

  • I.D. Johnston, D.K. McCluskey, C.K.L. Tan, M.C. Tracey, J. Micromech. Microeng. 24, 035017 (2014)

    Article  Google Scholar 

  • J.K. Lee, M.C. Kung, H.H. Kung, L.F. Mockros, ASAIO. J. 54, 390 (2008)

    Article  Google Scholar 

  • M. Mazzeffi, J. Greenwood, K. Tanaka, J. Menaker, R. Rector, D. Herr, Z. Kon, J. Lee, B. Griffith, K. Rajagopal, S. Pham, Ann. Thorac. Surg. 101, 682 (2016)

    Article  Google Scholar 

  • M. Mugford, D. Elbourne, D. Field, Cochrane Database of Systematic Reviews (2008). (CD001340)

  • P. Nath, S. Roy, T. Conlisk, A.J. Fleischman, Biomed. Microdevices. 7(3), 169–177 (2005)

    Article  Google Scholar 

  • M.A. Noah, G.J. Peek, S.J. Finney, M.J. Griffiths, D.A. Harrison, R. Grieve, M.Z. Sadique, J.S. Sekhon, D.F. McAuley, R.K. Firmin, C. Harvey, J.J. Cordingley, S. Price, A. Vuylsteke, D.P. Jenkins, D.W. Noble, R. Bloomfield, T.S. Walsh, G.D. Perkins, D. Menon, B.L. Taylor, K.M. Rowan, J. Am. Med. Assoc. 306, 1659–1668 (2011)

    Article  Google Scholar 

  • P.P. O’Rourke, R.K. Crone, J.P. Vacanti, J.H. Ware, C.W. Lillehei, R.B. Parad, M.F. Epstein, Pediatrics. 84, 957–963 (1989)

    Article  Google Scholar 

  • G.J. Peek, M. Mugford, R. Tiruvoipati, A. Wilson, E. Allen, M.M. Thalanany, C.L. Hibbert, A. Truesdale, F. Clemens, N. Cooper, R.K. Firmin, D. Elbourne, Lancet. 34, 1351–1363 (2009)

    Article  Google Scholar 

  • J.A. Potkay, Lab. Chip. 14, 4122–4138 (2014)

    Article  Google Scholar 

  • J.A. Potkay, M. Magnetta, A. Vinson, B. Cmolik, Lab. Chip. 11, 2901–2909 (2011)

    Article  Google Scholar 

  • G. Scorrano, G. Bruno, N. di Trani, M. Ferrari, A. Pimpinelli, A. Grattoni, ACS. Appl. Mater. Interfaces. 10, 32233 (2018)

    Article  Google Scholar 

  • R.A. Smith, A.J. Fleischman, W.H. Fissell, C.A. Zorman, S. Roy, Meas. Sci. Technol. 22, 045802 (2011)

    Article  Google Scholar 

  • J.M. Toomasian, R.H. Bartlett, Perfusion. 26, 5 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Blauvelt is supported in part by NIH T32 training grants (HD049303 and HL007544). The project was funded by an FDA-supported West Coast Consortium for Technology and Innovation in Pediatrics grant (P50FD006425), UCSF Benioff Children’s Hospital Silver Award funds from the UCSF-Stanford Pediatric Device Consortium Annual Accelerator Competition (2020), and an NIH/NIBIB grant (U01EB025136). Silicon membrane fabrication was performed at the Berkeley Marvell Nanolab, Stanford Nanofabrication Facility (SNF), and Stanford Nano Shared Facilities (SNSF).

Author information

Authors and Affiliations

Authors

Contributions

Blauvelt, D: Concept, design, data collection, data analysis, data interpretation, drafting of the article, funding secured; Chui, B: Concept, membrane design, membrane fabrication, critical revision of the article; Higgins, N: Data collection, data analysis, data interpretation, critical revision of the article; Baltazar, F: Membrane fabrication, critical revision of the article; Roy, S: Concept, design, data interpretation, critical revision of the article, approval of article, funding secured.

Corresponding author

Correspondence to Shuvo Roy.

Ethics declarations

Competing interests

Shuvo Roy is an Editorial Board Member for Biomedical Microdevices and founder of Silicon Kidney. The authors have no additional competing interests to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

David G. Blauvelt and Benjamin Chui have contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blauvelt, D.G., Chui, B.W., Higgins, N.C. et al. Silicon membranes for extracorporeal life support: a comparison of design and fabrication methodologies. Biomed Microdevices 25, 2 (2023). https://doi.org/10.1007/s10544-022-00639-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-022-00639-7

Keywords

Navigation