Skip to main content
Log in

Biosensors for detection of prostate cancer: a review

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Diagnosis of prostate cancer (PC) has posed a challenge worldwide due to the sophisticated and costly diagnostics tools, which include DRE, TRUS, GSU, PET/CT scan, MRI, and biopsy. These diagnostic techniques are very helpful in the detection of PCs; however, all the techniques have their serious limitations. Biosensors are easier to fabricate and do not require any cutting-edge technology as required for other imaging techniques. In this regard, point-of-care (POC) biosensors are important due to their portability, convenience, low cost, and fast procedure. This review explains the various existing diagnostic tools for the detection of PCs and the limitation of these methods. It also focuses on the recent studies on biosensors technologies as an alternative to the conventional diagnostic techniques for the detection of PCs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PC:

Prostate cancer

DRE:

Digital rectal examination

TRUS:

Transrectal Ultrasound

GSU:

Gray-scale ultrasonography

PET/CT:

Positron emission tomography/computer tomography scan

PDU:

Power doppler ultrasonography

3D-CE-PDU:

Three-dimensional contrast-enhanced power doppler ultrasonography

TMRI:

Transrectal magnetic resonance imaging

PSA:

Prostate-specific antigen

ELISA:

Enzyme-linked immunosorbent assay

SPE:

Screen-printed electrodes

LOD:

Limit of detection

VEGF:

Vascular endothelial growth factor

MEMS:

Micro-electromechanical systems

SPR:

Surface plasmon resonance

QD:

Quantum dot

LSPR:

Localized surface plasmon resonance

QCM:

Quartz crystal microbalance

PZT:

Lead titanate zirconate

LFA:

Lateral flow assay

µPAD:

Microfluidic paper-based analytical devices

POC:

Point- of- care

References

  • S.S. Acimovic, M.A. Ortega, V. Sanz, J. Berthelot, J.L. Garcia-Cordero, J. Renger, S.J. Maerkl, M.P. Kreuzer, R. Quidant, LSPR chip for parallel, rapid, and sensitive detection of cancer markers in serum. Nano Lett. 14(5), 263–264 (2014). https://doi.org/10.1021/nl500574n

  • V. Amendola, R. Pilot, M. Frasconi, O.M. Marago, M.A. Iatì, Surface plasmon resonance in gold nanoparticles: a review. J. Phys. Cond. Matt. 29(20), (2017)

  • M.A. Arugula, A. Simonian, Novel trends in affinity biosensors: current challenges and perspectives. Meas. Sci. Technol. 25(3), (2014)

  • E.H. Ayat, M.M. Darabi, N. Mohammadian, M. Parizadi, T. Kianoush, K.M. Khabazand F. Kamalian, Ratios of Free to Total Prostate-Specific Antigen and Total Prostate-Specific Antigen to Protein Concentrations in Saliva and Serum of Healthy Men. Urol. J. 4(4), 238–241 (2007). https://doi.org/10.1016/j.urology.2009.07.55

  • M. Barceló, M. Castells, L. Bassas, F. Viguésand S. Larriba, Semen miRNAs contained in exosomes as non-invasive biomarkers for prostate cancer diagnosis. Sci. Reps. 9(1), 1–16 (2019). https://doi.org/10.1038/s41598-019-50172-6

  • C. Becker, T. Piironen, K. Pettersson, T.H.O.M.A.S. BJöRK, K.J. Wojno, J.E. Oesterling and H. Lilja, Discrimination of men with prostate cancer from those with benign disease by measurements of human glandular kallikrein 2 (HK2) in serum. J. Urol. 163(1), 311–316 (2000)

    Article  Google Scholar 

  • Y. Chang, M. Wang, L. Wang, N. Xia, Recent progress in electrochemical biosensors for detection of prostate-specific antigen. Int. J. Electrochem. Sci. 13(5), 4071–4084 (2018). https://doi.org/10.20964/2018.05.24

  • Y. Chen, X. Guo, W. Liu, L. Zhang, L, Paper based fluorometric immune device with quantum-dot labeled antibodies for simultaneous detection of carcinoembryonic antigen and prostate specific antigen. Microchim. Acta. 186(2), 1–9 (2019). https://doi.org/10.1007/s00604-019-3232-0

  • C. Chen, J. Wang, Optical biosensors: an exhaustive and comprehensive review. Analyst 145(5), 1605–1628 (2020). https://doi.org/10.1039/c9an01998g

    Article  Google Scholar 

  • H. Chen, J. Huang, D.W.H. Fam, A.I.Y. Tok, Horizontally aligned carbon nanotube based biosensors for protein detection. Bioengineering 3(4), 23 (2016). https://doi.org/10.3390/bioengineering3040023

    Article  Google Scholar 

  • L.C. Clark Jr, C. Lyons. Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sci. 102(1), 29–45 (1962). https://doi.org/10.1111/nyas.1962.102.issue-1

  • P. Damborský, J. Šviteland J. Katrlík. Optical biosensors. Essays in Biochem. 60(1), 91–100 (2016). https://doi.org/10.1042/ebc20150010

  • W. Dungchai, O. Chailapakul, C.S. Henry, A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 136(1), 77–82 (2011). https://doi.org/10.1039/c0an00406e

    Article  Google Scholar 

  • G. Ertürk, H.Özen, M.A. Tümer, B. Mattiassonand A. Denizli, Microcontact imprinting based surface plasmon resonance (SPR) biosensor for real-time and ultrasensitive detection of prostate specific antigen (PSA) from clinical samples. Sens. Actuators B Chem. 224, 823–832 (2016). https://doi.org/10.1016/j.snb.2015.10.093

  • T. Endo, S. Yamamura, N.Nagatani, Y. Morita, Y. Takamura, E. Tamiya, Localized surface plasmon resonance based optical biosensor using surface modified nanoparticle layer for label-free monitoring of antigen–antibody reaction. Sci. Technol. Adv. Maters. 6(5), 491(2005). https://doi.org/10.1016/j.stam.2005.03.019

  • C. Esseghaier, G.A. Suaifan, A. Ng, M. Zourob, One-step assay for optical prostate specific antigen detection using magnetically engineered responsive thin film. J. Biomed. Nanotechnol. 10(6), 1123–1129 (2014). https://doi.org/10.1166/jbn.2014.1803

    Article  Google Scholar 

  • H. Farahani, M. Alaee, J. Amri, M.R. Baghiniaand M. Rafiee, Serum and Saliva Concentrations of Biochemical Parameters in Men with Prostate Cancer and Benign Prostate Hyperplasia. Lab. Med. 51(3), 243–251 (2020). https://doi.org/10.1093/labmed/lmz053

  • C.C. Fang, C.C. Chou, Y.Q. Yang, T. Wei-Kai, Y.T., Wang. and Y.H. Chan, Multiplexed detection of tumor markers with multicolor polymer dot-based immunochromatography test strip. Anal. Chem. 90(3), 2134–2140 (2018). https://doi.org/10.1021/acs.analchem.7b04411

    Article  Google Scholar 

  • Z. Feng, S. Zhi, L. Guo, Y. Zhou, C. Lei, An integrated magnetic microfluidic chip for rapid immunodetection of the prostate specific antigen using immunomagnetic beads. Microchim. Acta 186(4), 1–14 (2019)

    Article  Google Scholar 

  • M. Ferro, C. Buonerba, D. Terracciano, G. Lucarelli, V. Cosimato, D. Bottero, V.M. Deliu, P. Ditonno, S. Perdonà, R. Autorino, I. Coman, Biomarkers in localized prostate cancer. Future Oncol. 12(3), 399–411 (2016)

    Article  Google Scholar 

  • X. Fu, J. Wen, J. Li, H. Lin, Y. Liu, X. Zhuang, C. Tian, L. Chen, Highly sensitive detection of prostate cancer specific PCA3 mimic DNA using SERS-based competitive lateral flow assay. Nanoscale 11(33), 15530–15536 (2019). https://doi.org/10.1039/c9nr04864b

    Article  Google Scholar 

  • P. Gopinath, V. Anitha, S.A. Mastani, Microcantilever based biosensor for disease detection applications. J. Med. Bioeng. 4, 34 (2015). https://doi.org/10.12720/jomb.4.4.307-311

  • T. Gutschner, S. Diederichs, The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 9(6), 703–719 (2012)

    Article  Google Scholar 

  • R. Gupta, S. Swaminathan, Modeling and simulation of piezoelectric based micro cantilever systems for Prostate Specific Antigen, International Symposium on Next-Generation Electronics (ISNE) 1–3 (2015). IEEE. https://doi.org/10.1109/isne.2015.7131950

  • S. Hachuda, T. Watanabe, D. Takahashi, T. Baba, 2015, May. Sensitive and selective detection of prostate specific antigen beyond ELISA using photonic crystal nanolaser. In 2015 Conference on Lasers and Electro-Optics (CLEO) (pp. 1–2). IEEE. https://doi.org/10.1364/cleo_at.2015.am1j.3

  • E.J. Halpern, Contrast-enhanced ultrasound imaging of prostate cancer. Reviews in urology 8(Suppl 1), S29 (2006)

    Google Scholar 

  • K. Hariharan, V. Padmanabha, Demography and disease characteristics of prostate cancer in India. Indian J. Uro 32(2), 103 (2016). https://doi.org/10.4103/0970-1591.174774

    Article  Google Scholar 

  • H. Härmä, T. Soukka, T. Lövgren, Europium nanoparticles and time-resolved fluorescence for ultrasensitive detection of prostate-specific antigen. Clin. Chem. 47(3), 561–568 (2001). https://doi.org/10.1093/clinchem/47.3.561

  • J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108(2), 462–493 (2008). https://doi.org/10.1021/cr068107d

    Article  Google Scholar 

  • J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors. Sens. Actuators B 54(1–2), 3–15 (1999). https://doi.org/10.1016/s0925-4005(98)00321-9

    Article  Google Scholar 

  • X.D. Hoa, A.G. Kirk, M. Tabrizian, Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosens. Bioelectron. 23(2), 151–160 (2007). https://doi.org/10.1016/j.bios.2007.07.001

  • J. Hu, S. Wang, L. Wang, F. Li, B. Pingguan-Murphy, T.J. Lu, F. Xu, Advances in paper-based point-of-care diagnostics. Biosens. Bioelectron. 54, 585–597 (2014)

    Article  Google Scholar 

  • J. Hu, J.R. Choi, S. Wang, Y. Gong, S. Feng, B. Pingguan-Murphy, T.JLu.F. Xu, Multiple test zones for improved detection performance in lateral flow assays. Sensors Actuators B Chem. 243, 484–488 (2017)

    Article  Google Scholar 

  • H.S. Jang, K.N. Park, C.D. Kang, J.P. Kim, S.J. Sim, K.S. Lee, Optical fiber SPR biosensor with sandwich assay for the detection of prostate specific antigen. Opt. Comm. 282(14), 2827–2830 (2009). https://doi.org/10.1016/j.optcom.2009.03.078

    Article  Google Scholar 

  • L.H. Jin, S.M. Li, Y.H. Cho, Enhanced detection sensitivity of pegylated CdSe/ZnS quantum dots-based prostate cancer biomarkers by surface plasmon-coupled emission. Biosens. Bioelectron. 33(1), 284–287 (2012). https://doi.org/10.1016/j.bios.2011.12.043

    Article  Google Scholar 

  • P. Jolly, P. Zhurauski, J.L. Hammond, A. Miodek, S. Liébana, T. Bertok, J. Tkáč, P. Estrela, Self-assembled gold nanoparticles for impedimetric and amperometric detection of a prostate cancer biomarker. Sensors and Actuators B: Chem. 251, 637–643 (2017). https://doi.org/10.1016/j.snb.2017.05.040

    Article  Google Scholar 

  • B. Jurado-Sánchez, Nanoscale biosensors based on self-propelled objects. Biosensors 8(3), 59 (2018). https://doi.org/10.3390/bios8030059

    Article  Google Scholar 

  • J.T. Kearns, D.W. Lin, Improving the specificity of PSA screening with serum and urine markers. Current urology reports 19(10), 1–4 (2018). https://doi.org/10.1007/s11934-018-0828-6

    Article  Google Scholar 

  • Key Statistics for Prostate Cancer, American cancer society. https://www.cancer.org/cancer/prostate-cancer/about/key-statistics.html. Viewed on 30 Sept 2021

  • K. Kerman, T. Endo, M. Tsukamoto, M. Chikae, Y. Takamura, E. Tamiya, Quantum dot-based immunosensor for the detection of prostate-specific antigen using fluorescence microscopy. Talanta 71(4), 1494–1499 (2007). https://doi.org/10.1016/j.talanta.2006.07.027

    Article  Google Scholar 

  • M.S. Khan, K. Dighe, Z. Wang, I. Srivastava, E. Daza, A.S. Schwartz-Dual, J. Ghannam, S.K. Misra, D. Pan, Detection of prostate specific antigen (PSA) in human saliva using an ultra-sensitive nanocomposite of graphene nanoplatelets with diblock-co-polymers and Au electrodes. Analyst 143(5), 1094–1103 (2018). https://doi.org/10.1039/c7an01932g

    Article  Google Scholar 

  • H.M. Kim, M. Uh, D.H. Jeong, H.Y. Lee, J.H. Park, S.K. Lee, Localized surface plasmon resonance biosensor using nanopatterned gold particles on the surface of an optical fiber. Sens. Actuators B: Chem. 280, 183–191 (2019)

    Article  Google Scholar 

  • A.P. Kirkham, M. Emberton, C. Allen, How good is MRI at detecting and characterising cancer within the prostate? European Urol. 50(6), 1163–1175 (2006). https://doi.org/10.1016/j.eururo.2006.06.025

    Article  Google Scholar 

  • G.G. Klee, M.K. Goodmanson, S.J. Jacobsen, C.Y. Young, J.A. Finlay, H.G. Rittenhouse, R.L. Wolfert, D.J. Tindall, Highly sensitive automated chemiluminometric assay for measuring free human glandular kallikrein-2. Clin. Chem. 45(6), 800–806 (1999)

    Article  Google Scholar 

  • J. Kwak, S.S. Lee, Highly sensitive piezoelectric immunosensors employing signal amplification with gold nanoparticles. Nanotechnology 30(44), 445502 (2019)

    Article  Google Scholar 

  • S.H. Lee, J.H., Sung and T.H. Park, Nanomaterial-based biosensor as an emerging tool for biomedical applications. Annals Biomed. Eng. 40(6), 1384–1397 (2012). https://doi.org/10.1007/s10439-011-0457-4

    Article  Google Scholar 

  • J.H. Lee, K.S. Hwang, J. Park, K.H. Yoon, D.S. Yoon, T.S. Kim, Immunoassay of prostate-specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever. Biosens. Bioelectron. 20(10), 2157–2162 (2005)

    Article  Google Scholar 

  • L.G. Lee, E.S. Nordman, M.D. Johnson, M.F. Oldham, A low-cost, high-performance system for fluorescence lateral flow assays. Biosensors 3(4), 360–373 (2013). https://doi.org/10.3390/bios3040360

    Article  Google Scholar 

  • J. Lee, P. Dak, Y. Lee, H. Park, W. Choi, M.A. Alam, S. Kim, Two-dimensional layered MoS2 biosensors enable highly sensitive detection of biomolecules. Sci. Reps. 4(1), 1–7 (2014). https://doi.org/10.1038/srep07352

    Article  Google Scholar 

  • X. Li, W. Li, Q. Yang, X. Gong, W. Guo, C. Dong, J. Liu, L. Xuan, J. Chang, Rapid and quantitative detection of prostate specific antigen with a quantum dot nanobeads-based immunochromatography test strip. ACS Appl. Mater. Interf. 6(9), 6406–6414 (2014). https://doi.org/10.1021/am5012782

    Article  Google Scholar 

  • Y.Y. Lin, J. Wang, G. Liu, H. Wu, C.M. Wai, Y. Lin, A nanoparticle label/immunochromatographic electrochemical biosensor for rapid and sensitive detection of prostate-specific antigen. Biosens. Bioelectron. 23(11), 1659–1665 (2008). https://doi.org/10.1016/j.bios.2008.01.037

    Article  Google Scholar 

  • G. Liu, Y.Y. Lin, J. Wang, H. Wu, C.M. Wai, Y. Lin, Disposable electrochemical immunosensor diagnosis device based on nanoparticle probe and immunochromatographic strip. Anal. Chem. 79(20), 7644–7653 (2007)

    Article  Google Scholar 

  • X. Liu, M. Mwangi, X. Li, M. O'Brien, G.M. Whitesides, Paper based piezoresistive MEMS sensors. Lab on a Chip 11(13), 2189–2196 (2011). https://doi.org/10.1039/c1lc20161a

  • T. Liu, N. Li, J.X. Dong, Y. Zhang, Y.Z. Fan, S.M. Lin, H.Q. Luo, N.B. Li, A colorimetric and fluorometric dual-signal sensor for arginine detection by inhibiting the growth of gold nanoparticles/carbon quantum dots composite. Biosens. Bioelectron. 87, 772–778 (2017). https://doi.org/10.1016/j.bios.2016.08.098

    Article  Google Scholar 

  • R. Lin, A. Skandarajah, R.E. Gerver, H.D. Neira, D.A. Fletcher, A.E. Herr, A lateral electrophoretic flow diagnostic assay. Lab on a Chip 15(6), 1488–1496 (2015). https://doi.org/10.1039/c4lc01370k

  • A.A. Luderer, Y.T. Chen, T.F. Soriano, W.J. Kramp, G. Carlson, C. Cuny, T. Sharp, W. Smith, J. Petteway, M.K. Brawer, R. Thiel, Measurement of the proportion of free to total prostate-specific antigen improves diagnostic performance of prostate-specific antigen in the diagnostic gray zone of total prostate-specific antigen. Urology 46(2), 187–194 (1995)

    Article  Google Scholar 

  • F. Maddalena, M.J. Kuiper, B. Poolman, F. Brouwer, J.C. Hummelen, D.M. de Leeuw, B. De Boer, P.W. Blom, P, Organic field-effect transistor-based biosensors functionalized with protein receptors. J. Appl. Phys. 108(12), (2010)

  • N. Mandal, V. Pakira, N. Samanta, N. Das, S. Chakraborty, B. Pramanick, C. RoyChaudhuri, PSA detection using label free graphene FET with coplanar electrodes based microfluidic point of care diagnostic device. Talanta 222, 121581 (2021). https://doi.org/10.1016/j.talanta.2020.121581

    Article  Google Scholar 

  • G. Marrazza, Piezoelectric biosensors for organophosphate and carbamate pesticides: a review. Biosensors 4(3), 301–317 (2014). https://doi.org/10.3390/bios4030301

    Article  Google Scholar 

  • Z. Mao, A. Ji, K. Yang, W. He, Y. Hu, Q. Zhang, D. Zhang, L. Xie, Diagnostic performance of PCA3 and hK2 in combination with serum PSA for prostate cancer. Medicine 97(42), (2018). https://doi.org/10.1097/md.0000000000012806

  • B.R. Matlaga, L.A. Eskew, D.L. McCULLOUGH, Prostate biopsy: indications and technique. J. Urol. 169(1), 12–19 (2003). https://doi.org/10.1097/00005392-200301000-00004

    Article  Google Scholar 

  • E.W. Nery, L.T. Kubota, Sensing approaches on paper-based devices: a review. Anal. Bioanal. Chem. 405(24), 7573–7595 (2013)

    Article  Google Scholar 

  • L.H. Pan, S.H. Kuo, T.Y. Lin, C.W. Lin, P.Y. Fang, H.W. Yang, An electrochemical biosensor to simultaneously detect VEGF and PSA for early prostate cancer diagnosis based on graphene oxide/ssDNA/PLLA nanoparticles. Biosens. Bioelectron. 89(1), 598–605 (2017). https://doi.org/10.1016/j.bios.2016.01.077

    Article  Google Scholar 

  • W. Pang, H. Zhao, E.S. Kim, H. Zhang, H. Yu, X. Hu, Piezoelectric microelectromechanical resonant sensors for chemical and biological detection. Lab on a Chip 12(1), 29–44 (2012). https://doi.org/10.1039/c1lc20492k

    Article  Google Scholar 

  • E. Petryayeva, U.J. Krull, Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review. Anal. Chim. Acta 706(1), 8–24 (2011). https://doi.org/10.1016/j.aca.2011.08.020

    Article  Google Scholar 

  • G.A. Posthuma-Trumpie, J. Korf, A. van Amerongen, Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A literature survey, Anal. Bioanal. Chem. 393(2), 569–582 (2009). https://doi.org/10.1007/s00216-008-2287-2

    Article  Google Scholar 

  • G. Presnova, D. Presnov, V. Krupenin, V. Grigorenko, A. Trifonov, I. Andreeva, O. Ignatenko, A. Egorov, M. Rubtsova, Biosensor based on a silicon nanowire field-effect transistor functionalized by gold nanoparticles for the highly sensitive determination of prostate specific antigen. Biosens. Bioelectron. 88, 283–289 (2017). https://doi.org/10.1016/j.bios.2016.08.054

    Article  Google Scholar 

  • P. Puech, O. Rouvière, R. Renard-Penna, A. Villers, P. Devos, M. Colombel, M.O. Bitker, X. Leroy, F. Mège-Lechevallier, E. Comperatand A. Ouzzane, Prostate cancer diagnosis: multiparametric MR-targeted biopsy with cognitive and transrectal US–MR fusion guidance versus systematic biopsy—prospective multicenter study. Radiology 268(2), 461–469 (2013). https://doi.org/10.1148/radiol.13121501

  • J.J. Ramsden, Optical biosensors. J. Mol. Recogn. 10(3), 109–120 (1997). https://doi.org/10.1002/(sici)1099-1352(199705/06)10:3<109::aid-jmr361>3.0.co;2-d

  • K. Ratajczak, M. Stobiecka, High-performance modified cellulose paper-based biosensors for medical diagnostics and early cancer screening: A concise review. Carbohydr. Polym. 229, (2020)

  • A.R. Rezk, A. Qi, J.R. Friend, W.H. Li, L.Y. Yeo, Uniform mixing in paper-based microfluidic systems using surface acoustic waves. Lab on a Chip 12(4), 773–779 (2012). https://doi.org/10.1039/c2lc21065g

  • C. Rodriguez, P. Dietrich, V. Torres-Costa, V. Cebrián, C. Gómez-Abad, A. Díaz, O. Ahumada, M.M. Silván, Near ambient pressure X-ray photoelectron spectroscopy monitoring of the surface immobilization cascade on a porous silicon-gold nanoparticle FET biosensor. Applied Surface Science 492, 362–368 (2019). https://doi.org/10.1016/j.apsusc.2019.06.056

    Article  Google Scholar 

  • T. Salminen, E. Juntunen, S.M. Talha, K. Pettersson, High-sensitivity lateral flow immunoassay with a fluorescent lanthanide nanoparticle label. J. Imm. Methods 465, 39–44 (2019). https://doi.org/10.1016/j.jim.2018.12.001

    Article  Google Scholar 

  • A.K. Sana, Y. Amemiya, T. Ikeda, A. Kuroda, S. Yokoyama, Detection of prostate specific antigen using silicon photonic crystal nanocavity resonator. In&nbsp;Quantum Sensing and Nano Electronics and Photonics XIV (Vol. 10111, p. 1011138). Int. Soc. Opt. Photon. (2017). https://doi.org/10.1117/12.2251604

  • M. Sanders, Y. Lin, J. Wei, T. Bono, R.G. Lindquist, An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers. Biosens. Bioelectron. 61, 95–101 (2014). https://doi.org/10.1016/j.bios.2014.05.009

    Article  Google Scholar 

  • K.E. Sapsford, T. Pons, I.L. Medintzand, H. Mattoussi, Biosensing with luminescent semiconductor quantum dots. Sensors 6(8), 925–953 (2006)

    Article  Google Scholar 

  • P. Sarkar, D. Ghosh, D. Bhattacharyay, S.E. Setford, A.E.E. Turner, Electrochemical immunoassay for Free prostate specific antigen (f‐PSA) using magnetic beads. Electroanalysis: An Int. J. Devoted to Fundamental and Practical Aspects of Electroanal. 20(13), 1414–1420 (2008). https://doi.org/10.1002/elan.200804194

  • P. Sarkar, P.S. Pal, D. Ghosh, S.J. Setford, I.E. Tothill, Amperometric biosensors for detection of the prostate cancer marker (PSA). Int. J. Pharmaceutics 238(1–2), 1–9 (2002). https://doi.org/10.1016/s0378-5173(02)00015-7

    Article  Google Scholar 

  • D.T. Schmid, H. John, R. Zweifel, T. Cservenyak, G. Westera, G.W. Goerres, G.K. von Schulthess, T.F. Hany, Fluorocholine PET/CT in patients with prostate cancer: initial experience. Radiology 235(2), 623–628 (2005)

    Article  Google Scholar 

  • M.J. Schöning, A. Poghossian, Recent advances in biologically sensitive field-effect transistors (BioFETs). Analyst 127(9), 1137–1151 (2002)

    Article  Google Scholar 

  • F.H. Schröder, A.B. Kruger, J. Rietbergen, R. Kranse, P.V.D. Maas, P. Beemsterboer, R. Hoedemaeker, Evaluation of the digital rectal examination as a screening test for prostate cancer. J. Nat. Cancer Ins. 90(23), 1817–1823 (1998). https://doi.org/10.1093/jnci/90.23.1817

    Article  Google Scholar 

  • Y. Seto, T. Iba, K. Abe, Development of ultra-high sensitivity bioluminescent enzyme immunoassay for prostate-specific antigen (PSA) using firefly luciferase. Luminescence 16(4), 285–290 (2001). https://doi.org/10.1002/bio.654

    Article  Google Scholar 

  • M. Sharafeldin, G.W. Bishop, S. Bhakta, A. El-Sawy, S.L. Suib, J.F. Rusling, Fe3O4 nanoparticles on graphene oxide sheets for isolation and ultrasensitive amperometric detection of cancer biomarker proteins.&nbsp;Biosens. Bioelectron. 91, 359–366 (2017). https://doi.org/10.1016/j.bios.2016.12.052

  • M.A. Shergujri, R. Jaman, A.J. Baruah, M. Mahato, D. Pyngrope, L.R. Singh, M. Gogoi, Based Sensors for Biomedical Applications. In Biomedical Engineering and its Applications in Healthcare (pp. 355-376). Springer, Singapore (2019)

  • R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics. CA: A Cancer J. Clin. 69(1), 7–34 (2019). https://doi.org/10.3322/caac.21551

  • J. Shen, L. Dudik, C.C. Liu, An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor. Sensors and Actuators B: Chem. 125(1), 106–113 (2007). https://doi.org/10.1016/j.snb.2007.01.043

    Article  Google Scholar 

  • P. Skládal, Piezoelectric biosensors. TrAC Trends in Anal. Chem. 79, 127–133 (2016). https://doi.org/10.1016/j.trac.2015.12.009

    Article  Google Scholar 

  • B. Srinivasan, S. Tung, Development and applications of portable biosensors. J. Lab. Autom. 20(4), 365–389 (2015)

    Article  Google Scholar 

  • U.H. Stenman, J. Leinonen, W.M. Zhangand, P. Finne, Prostate-specific antigen. In Seminars in cancer biology, Academic Press 9(2), 83–93 (1999). https://doi.org/10.1006/scbi.1998.0086

    Article  Google Scholar 

  • L.I. Stowell, L.E. Sharman, K. Hamel, An enzyme-linked immunosorbent assay (ELISA) for prostate-specific antigen. Forensic Sci. Int. 50(1), 125–138 (1991). https://doi.org/10.1016/0379-0738(91)90141-5

    Article  Google Scholar 

  • L. Su, C.C. Fong, P.Y. Cheung, M. Yang, Development of novel piezoelectric biosensor using pzt ceramic resonator for detection of cancer markers. In Biosensors and biodetection (pp. 277–291). Humana Press, New York, NY (2017)

  • L. Su, L. Zou, C.C. Fong, W.L. Wong, F. Wei, K.Y. Wong, R.S. Wu, M. Yang, Detection of cancer biomarkers by piezoelectric biosensor using PZT ceramic resonator as the transducer. Biosens. Bioelectron. 46, 155–161 (2013). https://doi.org/10.1016/j.bios.2013.01.074

    Article  Google Scholar 

  • I.E. Tothill, February. Biosensors for cancer markers diagnosis. In Seminars in cell & developmental biology&nbsp;(Vol. 20, No. 1, pp. 55–62). Academic Press (2009). https://doi.org/10.1016/j.semcdb.2009.01.015

  • H.V. Tran, B. Piro, S. Reisberg, L.D. Tran, H.T. Duc, M.C. Pham, Label-free and reagentless electrochemical detection of microRNAs using a conducting polymer nanostructured by carbon nanotubes: Application to prostate cancer biomarker miR-141. Biosens. Bioelectron. 49(15), 164–169 (2013). https://doi.org/10.1016/j.bios.2013.05.007

    Article  Google Scholar 

  • D. Unal, J.P.M. Sedelaar, R.G. Aarnink, G.J.L.H. Van Leenders, H. Wijkstra, F.M.J. Debruyne, J.J.M.C.H. De La Rosette, Three‐dimensional contrast‐enhanced power Doppler ultrasonography and conventional examination methods: the value of diagnostic predictors of prostate cancer. BJU International 86(1), 58–64 (2000). https://doi.org/10.1046/j.1464-410x.2000.00719.x

  • A.E. Urusov, A.V. Zherdev, B.B. Dzantiev, Towards lateral flow quantitative assays: detection approaches. Biosensors 9(3), 89 (2019)

    Article  Google Scholar 

  • S.K. Vashist, A review of microcantilevers for sensing applications. J. Nanotechnol. 3, 1–18 (2007)

    Google Scholar 

  • J. Wang, Nanomaterial-based electrochemical biosensors. Analyst 130(4), 421–426 (2005). https://doi.org/10.1039/b414248a

    Article  Google Scholar 

  • K.A. Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007). https://doi.org/10.1146/annurev.physchem.58.032806.104607

    Article  Google Scholar 

  • J. Yao, Y. Wang, Y. Dai, C.C. Liu, Bioconjugated, Single-Use Biosensor for the Detection of Biomarkers of Prostate Cancer, ACS. Omega 3(6), 6411–6418 (2018). https://doi.org/10.1021/acsomega.8b00634

    Article  Google Scholar 

  • B. Zhang, W. Gao, J. Piao, Y. Xiao, B. Wang, W. Peng, X. Gong, Z. Wang, H. Yang, J. Chang, Effective bioactivity retention of low-concentration antibodies on HFBI-modified fluorescence ICTS for sensitive and rapid detection of PSA. ACS Appl. Mater. Interf. 10(17), 14549–14558 (2018). https://doi.org/10.1021/acsami.8b02945

    Article  Google Scholar 

  • Y. Zhang, D. Feng, Y. Xu, Z. Yin, W. Dou, U.E. Habiba, C. Pan, Z. Zhang, H. Mou, H. Deng, X. Mi, DNA-based functionalization of two-dimensional MoS2 FET biosensor for ultrasensitive detection of PSA. Appl. Surf. Sci. 548, (2021)

  • M. Zhou, M. Yang, F. Zhou, Paper based colorimetric biosensing platform utilizing cross-linked siloxane as probe. Biosens. Bioelectron. 55, 39–43 (2014). https://doi.org/10.1016/j.bios.2013.11.065

    Article  Google Scholar 

  • Y. Zhu, H. Wang, L. Wang, J. Zhu, W. Jiang, Cascade signal amplification based on copper nanoparticle-reported rolling circle amplification for ultrasensitive electrochemical detection of the prostate cancer biomarker. ACS Appl. Mater. Interf. 8(4), 2573–2581 (2016). https://doi.org/10.1021/acsami.5b10285

    Article  Google Scholar 

Download references

Acknowledgment

We sincerely acknowledge the generous funding received from the Department of Biotechnology, India (No. BT/PR24652/NER/95/795/2017; Dated: 06/03/2019), sanctioned to Dr. Manashjit Gogoi for carrying out this piece of work. Also SERB, Govt of India is acknowledged for SERB project (No. EMR/2016/002634) sanctioned to Dr. Mrityunjoy Mahato.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manashjit Gogoi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S., Gogoi, M., Mahato, M. et al. Biosensors for detection of prostate cancer: a review. Biomed Microdevices 24, 32 (2022). https://doi.org/10.1007/s10544-022-00631-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-022-00631-1

Keywords

Navigation