Skip to main content
Log in

Performance and structural comparison of hydrogels made from wheat bran arabinoxylan using enzymatic and coacervation methods as micro-and nano- encapsulation and delivery devices

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This study evaluated the structural and performance differences between arabinoglucuronoxylan micro-hydrogels that were enzymatically produced from alkaline-extracted wheat bran arabinoglucuronoxylans using recombinant α-L-arabinofuranosidase (AbfB) that selectively removes arabinose side chains, and chemically through coacervation process, as delivery devices for bioactive substances. The encapsulations of model bioactive substance, gallic acid (GA), in the hydrogels, were done either in-situ or ex-situ to identify the most effective encapsulation and delivery method. The hydrogels particle size distribution, polydispersity index, GA encapsulation efficiency, retention and release of functional GA (based on antioxidant activity) were assessed. The hydrogels formed in both coacervation and enzymatic processes had particle size ranges of 469–678 nm, which classify them as micro-hydrogels. However, the latter were monodispersed with polydispersity index (PdI) < 0.4 compared to the former with PdI > 0.7. In addition, enzymatically produced hydrogels attained higher zeta potential (−8.8 mV) and retained and released GA with higher anti-oxidant capacity (91%) than chemically formed micro-hydrogels (zeta potential = − 3.3 mV and antioxidant capacity = 80%). However, GA encapsulation efficiencies (72% in-situ and 68% ex-situ) were higher in chemically formed micro-hydrogels than enzymatically produced micro-hydrogels (59% in-situ and 52% ex-situ). The in-situ encapsulated GA experienced less initial burst during sustained release of 8 h compared to ex-situ encapsulation. Overall, enzymatic modification process and in-situ encapsulation were the most effective methods for production of arabinoglucuronoxylan micro-hydrogels delivery devices and for encapsulation of the GA, respectively, because of maintaining functional GA upon release and having the potential to customize the structural and functional properties of the micro-hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • M. Aguedo, C. Fougnies, M. Dermience, A. Richel, Carbohydr Poly, 105 (2014)

  • M. Chang, X. Liu, L. Meng, X. Wang, J. Ren. Pharm,10 (2018)

  • A. Chanwitheesuk, A. Teerawutgulrag, J.D. Kilburn, N. Rakariyatham, Food Chem, 100 (2007)

  • N. Chen, L.A. Dempere, and Z. Tong, ACS Sustinable Chem. Eng. 4 (2016)

  • A.F.A. Chimphango, W.H. van Zyl, J.F. Görgens, Carbohydr Polym, 88 (2012a)

  • A.F.A. Chimphango, S. Rose, W.H. van Zyl, J.F. Görgens, Appl. Microbiol. Biotechnol. 95 (2012b)

  • A.F.A. Chimphango, W.H. van Zyl, J.F. Görgens. J Chem Technol Biotechnol, 87(2012c)

  • S. Cartaxo da Costa Urtiga, C. Aquino Azevedo de Lucena Gabi, G. Rodrigues de Araújo Eleamen, B. Santos Souza, H.L.F. Pessôa, H.R. Marcelino, E. Afonso de Moura Mendonça, E.S.T.D. Egito, E.E. Oliveira, Drug Dev. Ind. Pharm, 43 (2017)

  • A.E. da Silva, H.R. Marcelino, M.C.S. Gomes, E.E. Oliveira, T. Nagashima Jr, E. S.T. Egito, Prod Appl Biopolym, 232 (2012)

  • B. J. M de Wet, M. K. A. Matthew, K. Storbeck, W. H. van Zyl, B. A. Prior, Appl. Microbiol. Biotechnol. 77 (2008)

  • A. Ebringerová, Z. Hromádková, T. Heinze, Advanc Polym Sci, 186 (2005),

  • L. R. Feksa, E. A. Troian, C. D. Muller, F. Viegas, Machado, A. B., & Rech, V. C. Hydrogels for biomedical applications. In Nanostructures for the Engineering of Cells, Tissues and Organs (pp. 403–438) (2018)

  • M.C. Figueroa-Espinoza, M.H. Morel, A. Surget, M. Asther, S. Moukha, J.C. Sigoillot, and X. Rouau, Food Hydrocoll. 13 (1999)

  • T. C. Fonseca Silva, Y. Habibi, J. L. Colodette, and L. A. Lucia, Soft Matter 7, (2011)

  • R. B. Garcia, T. Nagashima Jr, A. K. C. Praxedes, F. N. Raffin, T. F. A. L. Moura, and E. S. T. do Egito, Polymer Bulletin 46, (2001)

  • G K. R. Gomes, A. F. Chimphango, and J. F. Görgens, Carbohydr Poly 131, (2015)

  • H M. Hans and A. Lowman, Current Opinion in Solid State and Materials Science 6, (2002)

  • T. A. Holland, Y. Tabata, and A. G. Mikos, Journal of Controlled Release 91, (2003)

  • H S. Hornig, H. Bunjes, and T. Heinze, Journal of Colloid and Interface Science 338, (2009)

  • G. Hu and W. Yu, International Journal of Food Sciences and Nutrition 64, (2013)

  • K-Y. Hwa, Vincent, HS Chang, Y-Y. Cheng, Y-D. Wang, P-S. Jan, B. Subramani, M-J. Wu and B-K. Wang, Biomedical microdevices 19, 2017

  • I S. Iravani, C. S. Fitchett, and D. M. Georget, Carbohydr Poly 85, (2011)

  • L. Jacquemin, R. Zeitoun, C. Sablayrolles, P.-Y. Pontalier, and L. Rigal, Process Biochemistry 47, (2012)

  • M. A. Kabel, H. van den Borne, J.-P. Vincken, A. G. Voragen, and H. A. Schols, Carbohydr Poly 69, (2007)

  • M. Kačuráková, P. S. Belton, R. H. Wilson, J. Hirsch, and A. Ebringerová, J. Sci. Food Agric. 77, (1998)

  • M. A. Karaaslan, M. A. Tshabalala, and G. Buschle-Diller, J. Appl. Polym. Sci. 124, (2012)

  • S.-H. Kim, C.-D. Jun, K. Suk, B.-J. Choi, H. Lim, S. Park, S. H. Lee, H.-Y. Shin, D.-K. Kim, and T.-Y. Shin, Toxicological Sciences, 91, (2006)

  • D. Koegelenberg, and A.F.A. Chimphango, Food Chem 221 (2017)

  • L J. Lamarra, S. Rivero, and A. Pinotti, Materials Science and Engineering: 67, (2016)

  • Å. Linder, R. Bergman, A. Bodin, and P. Gatenholm, Langmuir 19, (2003)

  • H. W. Lopez, M.-A. Levrat, C. Guy, A. Messager, C. Demigné, and C. Rémésy, The Journal of Nutritional Biochemistry 10, (1999)

  • H. Marcelino, A. da Silva, M. Gomes, E. Oliveira, T. Nagashima-Junior, G. Pinheiro, A. da Silva, A. Timoteo, L. Agnez-Lima, and A. Ayala, Polymers 7, (2015)

  • A. Martínez-López, E. Carvajal-Millan, M. Miki-Yoshida, L. Alvarez-Contreras, A. Rascón-Chu, J. Lizardi-Mendoza, and Y. López-Franco, Molecules 18, (2013)

  • Y. P. Neo, S. Ray, J. Jin, M. Gizdavic-Nikolaidis, M. K. Nieuwoudt, D. Liu, and S. Y. Quek, Food Chemistry 136, (2013)

  • H. Nourbakhsh, Z. Emam-Djomeh, A. Madadlou, M. E. Mousavi, A. A. Moosavi-Movahedi, and S. Gunasekaran, Journal of Food Processing and Preservation 41, (2017)

  • P. Peng and D. She, Carbohydr Poly 112, (2014)

  • F. Peng, P. Peng, F. Xu, and R.-C. Sun, Biotechnology Advances 30, (2012a)

  • H. Peng, N. Wang, Z. Hu, Z. Yu, Y. Liu, J. Zhang, and R. Ruan, Industrial Crops and Products 37, (2012b)

  • Ľubica Prisenžňáková, G. Nosáľová, Z. Hromádková, and A. Ebringerová, Fitoterapia 81, (2010)

  • S. Ribeiro, L. Barbosa, J. Queiroz, M. Knödler, and A. Schieber, Food Chemistry 110, (2008)

  • P. Robert, P. García, N. Reyes, J. Chávez, and J. Santos, Food Chemistry 134, (2012)

  • A. Sluiter, B.Hames, R. Ruiz, C. Scarlata,. J. Sluiter, and D. Templeton. Laboratory Analytical Procedure (LAP) (2008a)

  • A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D Templeton, and D. Crocker. Laboratory analytical procedure, 1617, (2008b)

  • J. B. Sluiter, R. O. Ruiz, C. J. Scarlata, A. D. Sluiter, and D. W. Templeton, J. Agric. Food Chem. 58, (2010)

  • K. S. Soppimath, T. M. Aminabhavi, A. R. Kulkarni, and W. E. Rudzinski, Journal of Controlled Release 70, (2001)

  • D. Sporck, F. A. M. Reinoso, J. Rencoret, A. Gutiérrez, J. C. del Rio, A. Ferraz, and A. M. F. Milagres, Biotechnol Biofuels 10, (2017); X.-F. Sun, H.-hong Wang, Z.-xin Jing, and R. Mohanathas, Carbohydr Poly 92, (2013)

  • I. Šurina, M. Jablonský, A. Ház, A. Sladková, A. Briškárová, F. Kačík, and J. Šima, BioResource 10, (2015)

  • L. Tavano, R. Muzzalupo, N. Picci, and B. de Cindio, Colloids and Surfaces B: Biointerfaces 114, (2014)

  • F. Ullah, M. B. H. Othman, F. Javed, Z. Ahmad, and H. M. Akil, Materials Science and Engineering: C 57 (2015)

  • G.-C. Yen, P.-D. Duh, and H.-L. Tsai, Food Chemistry 79 (2002)

  • M. Zhan, M. Guo, Y. Jiang, and X. Wang, Int. J Mol Sci 16 (2015)

  • Y. Zhang, L. Pitkänen, J. Douglade, M. Tenkanen, C. Remond, and C. Joly, Carbohydr Poly 86, (2011)

  • X. Zhang, C. Jin, Y. Jiang, G. Liu, G. Wu, and Z. Kong, BioResources 12 (2017)

  • X. Zhou, Y. Liu, Q. Guo, D. Wang, L. Peng, and S. Cao, Carbohydr Poly 81 (2010)

Download references

Acknowledgements

National Research Foundation (NRF) of South Africa and Process Engineering Department, Stellenbosch University for financial support, Dr. Shaunita Rose (Microbiology Department), Dr. Elrika Harmzen-Pretorius (Central Analytical Facilities) and Dr. Helen Pfukwa (Chemistry Department) Stellenbosch University, for donation of Aspergillus niger D15 strain; assistance with the technical aspects of the project, and analytical services, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annie F. A. Chimphango.

Ethics declarations

Conflict of interest

The Authors would like to declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Classification: Biomaterials; biopolymers; Drug delivery devices; Hydrogels; Nanotechnology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chimphango, A.F.A., Matavire, T.O. Performance and structural comparison of hydrogels made from wheat bran arabinoxylan using enzymatic and coacervation methods as micro-and nano- encapsulation and delivery devices. Biomed Microdevices 21, 97 (2019). https://doi.org/10.1007/s10544-019-0445-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-019-0445-2

Keywords

Navigation