Skip to main content
Log in

Effects of two surface acoustic wave sorting chips on particles multi-level sorting

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Particle/cell sorting has great potential in medical diagnosis and chemical analysis. Two kinds of microfluidic sorting chips (sequential sorting chip and direct sorting chip) are designed, which combine hydraulic force and acoustic radiation force to achieve continuous sorting of multiple particles. Firstly, the optimal values of the angle (α) between the interdigital transducer (IDT) and the main channel, the peak-to-peak voltage (Vpp), the main flow velocity (Vmax) and the flow ratio (A) are determined by simulation and experiments, the related optimal parameters were obtained that the α = 15°, Vpp = 25 V, Vmax = 4 mm/s, flow ratio A1 = 0.2, and A2 = 0.5, respectively. Then, the corresponding sorting experiments were carried out using two kinds of sorting chips to sort the polystyrene (PS) particles with diameters of 1 μm, 5 μm, and 10 μm, and the sorting rate and purity of particles were calculated and analyzed. Experimental results show that the two kinds of sorting chips can achieve continuous sorting of multiple particles, and the sorting effect of sequential sorting chip (control flow ratio) is better than that of direct sorting chip. In addition, the sorting chips in our research have the advantages of simple structure, high sorting efficiency, and the ability to sort multiple particles, which can be applied in medical and chemical research fields, such as cell sorting and chemical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 17
Fig. 16
Fig. 18

Similar content being viewed by others

References

  • J. An, J. Lee, S.H. Lee, J. Park, B. Kim, Separation of malignant human breast cancer epithelial cells from healthy epithelial cells using an advanced dielectrophoresis-activated cell sorter (DACS). Anal. Bioanal. Chem. 394(3), 801–809 (2009)

    Article  Google Scholar 

  • E. Berthier, E.W.K. Young, D. Beebe, Engineers are from PDMS-land, biologists are from Polystyrenia. Lab Chip 12, 1224–1237 (2012)

    Article  Google Scholar 

  • K. Chono, N. Shimizu, Y. Matsui, J. Kondoh, S. Shiokawa, Development of novel atomization system based on SAW streaming. Jpn. J. Appl. Phys. 43(5B), 2987–2991 (2004)

    Article  Google Scholar 

  • D.J. Collins, A. Tuncay, N. Adrian, Particle separation using virtual deterministic lateral displacement (vDLD). Lab Chip 14, 1595–1603 (2014)

    Article  Google Scholar 

  • D.J. Collins, B. Morahan, J. Garcia-Bustos, C. Doerig, M. Plebanski, A. Neild, Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat. Commun. 6, 8686 (2015)

    Article  Google Scholar 

  • G. Destgeer, K.H. Lee, J.H. Jung, A. Alazzam, H.J. Sung, Continuous separation of particles in a PDMS microfluidic channel via travelling surface acoustic waves (TSAW). Lab Chip 13(21), 4210–4216 (2013)

    Article  Google Scholar 

  • G. Destgeer, B.H. Ha, J.H. Jung, H.J. Sung, Submicron separation of microspheres via travelling surface acoustic waves. Lab Chip 14(24), 4665–4672 (2014)

    Article  Google Scholar 

  • G. Destgeer, B.H. Ha, J. Park, J.H. Jung, A. Alazzam, H.J. Sung, Microchannel anechoic corner for size-selective separation and medium exchange via traveling surface acoustic waves. Anal. Chem. 87(9), 4627–4632 (2015)

    Article  Google Scholar 

  • C. Devendran, N.R. Gunasekara, D.J. Collins, A. Neild, Batch process particle separation using surface acoustic waves (SAW): Integration of travelling and standing SAW. RSC Adv. 6(7), 5856–5864 (2016)

    Article  Google Scholar 

  • X. Ding, Z. Peng, S.C.S. Lin, M. Geri, S.X. Li, P. Li, Y.C. Chen, M. Dao, S. Suresh, H. TJl, Cell separation using tilted-angle standing surface acoustic waves. Proc. Natl. Acad. Sci. 111(36), 12992–12997 (2014)

    Article  Google Scholar 

  • D.C. Duffy, J.C. Mcdonald, O.J. Schueller, G.M. Whitesides, Rapid prototyping of microfluidic Systems in Poly(dimethylsiloxane). Anal. Chem. 70(23), 4974–4984 (1998)

    Article  Google Scholar 

  • J. Friend, L.Y. Yeo, Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics. Review of Modern Physic 83(2), 647–704 (2011)

    Article  Google Scholar 

  • P.E. Furlani, Magnetophoretic separation of blood cells at the microscale. J. Phys. D. Appl. Phys. 40(5), 1313–1319 (2007)

    Article  Google Scholar 

  • R. Guldiken, M.C. Jo, N.D. Gallant, U. Demirci, J. Zhe, Sheathless size-based acoustic particle separation. Sensors 12(12), 905–922 (2012)

    Article  Google Scholar 

  • L.R. Huang, Continuous particle separation through deterministic lateral displacement. Science 304(5673), 987–990 (2004)

    Article  Google Scholar 

  • H.M. Ji, V. Samper, Y. Chen, C.K. Heng, T.M. Lim, L. Yobas, Silicon-based microfilters for whole blood cell separation. Biomed. Microdevices 10(2), 251–257 (2008)

    Article  Google Scholar 

  • H. Li, J. Friend, L. Yeo, A. Dasvarma, K. Traianedes, Effect of surface acoustic waves on the viability, proliferation and differentiation of primary osteoblast-like cells. Biomicrofluidics 3(3), 034102 (2009)

    Article  Google Scholar 

  • S.X. Li, X.Y. Ding, Z.M. Mao, Y.C. Chen, N. Nama, F. Guo, P. Li, L. Wang, C.E. Cameron, T.J. Huang, Standing surface acoustic wave (SSAW)-based cell washing. Lab Chip 15(1), 331–338 (2015)

    Article  Google Scholar 

  • S.X. Li, F. Ma, H. Bachman, C.E. Cameron, X.Q. Zeng, T.J. Huang, Acoustofluidic bacteria separation. Journal of Micromechanics & Microengineering 27(1), 015031 (2017)

    Article  Google Scholar 

  • M.P. Macdonald, G.C. Spalding, K. Dholakia, Microfluidic sorting in an optical lattice. Nature 426(6965), 421–424 (2003)

    Article  Google Scholar 

  • S. Mashaghi, A. Abbaspourrad, D.A. Weitz, A.M. van Oijen, Droplet microfluidics: A tool for biology, chemistry and nanotechnology. TrAC Trends Anal. Chem. 82, 118–125 (2016)

    Article  Google Scholar 

  • J. Nam, H. Lim, C. Kim, J.Y. Kang, S. Shin, Density-dependent separation of encapsulated cells in a microfluidic channel by using a standing surface acoustic wave. Biomicrofluidics 6(2), 24120 (2012)

    Article  Google Scholar 

  • S.M. Naseer, A. Manbachi, M. Samandari, P. Walch, Y. Gao, Y.S. Zhang, F. Davoudi, W. Wang, K. Abrinia, J.M. Cooper, A. Khademhosseini, S.R. Shin, Surface acoustic waves induced micropatterning of cells in gelatin methacryloyl (GelMA) hydrogels. Biofabrication 9(1), 015020 (2017)

    Article  Google Scholar 

  • J.W. Ng, D.J. Collins, C. Devendran, Y. Ai, A. Neild, Flow-rate-insensitive deterministic particle sorting using a combination of travelling and standing surface acoustic waves. Microfluid. Nanofluid. 20(11), UNSP 151 (2016)

    Article  Google Scholar 

  • A.M. Soliman, M.A. Eldosoky, T.E. Taha, The separation of blood components using standing surface acoustic waves (SSAWs) microfluidic devices: Analysis and simulation. Bioengineering 4(2), 4020028 (2017)

    Google Scholar 

  • Z. Wu, B. Willing, J. Bjerketorp, J.K. Jansson, K. Hjort, Soft inertial microfluidics for high throughput separation of bacteria from human blood cells. Lab Chip 9, 1193 (2009)

    Article  Google Scholar 

  • M. Yamada, M. Seki, Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip 5(11), 1233 (2005)

    Article  Google Scholar 

  • L.Y. Yeo, J.R. Friend, Ultrafast microfluidics using surface acoustic waves. Biomicrofluidics 3(1), 012002 (2009)

    Article  Google Scholar 

  • C.W. Yung, J. Fiering, A.J. Mueller, D.E. Ingber, Micromagnetic–microfluidic blood cleansing device. Lab Chip 9(9), 1171–1177 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Jilin Province Natural Science Foundation Projects (No. 20170101136JC), the National Natural Science Foundation Projects (No. 51375207; 51875234), and the Jilin Provincial Department of Education Project (JJKH20190140KJ) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., He, F., Li, Y. et al. Effects of two surface acoustic wave sorting chips on particles multi-level sorting. Biomed Microdevices 21, 59 (2019). https://doi.org/10.1007/s10544-019-0419-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-019-0419-4

Keywords

Navigation