Skip to main content
Log in

Fabrication of sponge-forming microneedle patch for rapidly sampling interstitial fluid for analysis

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Microneedle (MN) patch has been used for collecting dermal interstitial fluid (ISF) containing biomarkers from patients with safety, pain-free and easy-to-use manner. However, long sampling time for biomarkers analysis still poses a significant challenge. Here, we describe a new sponge-forming MN patch consisting of polyvinyl formal (PVF) for rapidly extracting ISF from skin. Owing to the supreme water affinity of PVF, this MN patch can extract 1.6 mg ISF in 1 min without the assistance of extra devices, which remarkably facilitates timely analysis. The MN patch had preserved structural integrity in the swelling hydrated state without leaving residues in skin after usage, and the treated skin recovered within 8 h. More importantly, the extracted ISF can be efficiently recovered from the MN patch by simple centrifugation for the subsequent offline analysis of biomarkers such as glucose and cholesterol. Our results reveal that the new sponge-forming MN patch holds considerable promise for minimally invasive sampling ISF for biomarkers detection in real-life situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • A. Arora, M.R. Prausnitz, S. Mitragotri, Int. J. Pharm. 364, 227 (2008)

    Article  Google Scholar 

  • S.M. Bal, C. Julia, P. Stan, J.A. Bouwstra, European Journal of Pharmaceutical Sciences Official Journal of the European Federation for Pharmaceutical Sciences. 35, 193 (2008)

    Article  Google Scholar 

  • A.J. Bandodkar, W. Joseph, Trends Biotechnol. 32, 363 (2014)

    Article  Google Scholar 

  • A. Barbour, S. Schmidt, W.R. Rout, K. Ben-David, O. Burkhardt, H. Derendorf, Int. J. Antimicrob. Agents 34, 231 (2009)

    Article  Google Scholar 

  • E. Caffarelsalvador, A.J. Brady, E. Eltayib, M. Teng, A. Alonsovicente, P. Gonzalezvazquez, B.M. Torrisi, E.M. Vicenteperez, K. Mooney, D.S. Jones, PLoS One 10, e0145644 (2015)

    Article  Google Scholar 

  • H. Chang, M. Zheng, X. Yu, A. Than, R.Z. Seeni, R. Kang, J. Tian, D.P. Khanh, L. Liu, P. Chen, Adv. Mater. 29, 1702243 (2017)

    Article  Google Scholar 

  • J. Chen, W. Huang, Z. Huang, S. Liu, Y. Ye, Q. Li, M. Huang, AAPS PharmSciTech 19, 1141 (2018)

    Article  Google Scholar 

  • J. Chen, Y. Qiu, S. Zhang, Y. Gao, Drug Dev. Ind. Pharm. 42, 890 (2016)

    Article  Google Scholar 

  • J. Chen, Y. Qiu, S. Zhang, G. Yang, Y. Gao, Drug Development & Industrial Pharmacy. 41, 415 (2015)

    Article  Google Scholar 

  • L. Daugimont, N. Baron, G. Vandermeulen, N. Pavselj, D. Miklavcic, M.C. Jullien, G. Cabodevila, L.M. Mir, V. Préat, J. Membr. Biol. 236, 117 (2010)

    Article  Google Scholar 

  • S. Davis, B. Landis, Z. Adams, M.P. Mg, J. Biomech. 37, 1155 (2004)

    Article  Google Scholar 

  • C.S. Ester, A.J. Brady, E. Eyman, T. Meng, A.V. Ana, G.V. Patricia, B.M. Torrisi, V.P.E. Maria, M. Karen, D.S. Jones, PLoS One 10, e0145644 (2015)

    Article  Google Scholar 

  • L.C. Guo, L. Kwang, L.C. Yeol, D. Manita, J. Hyungil, Adv. Mater. 24, 4583 (2012)

    Article  Google Scholar 

  • M.I. Haq, E. Smith, D.N. John, M. Kalavala, C. Edwards, A. Anstey, A. Morrissey, J.C. Birchall, Biomed. Microdevices 11, 35 (2009)

    Article  Google Scholar 

  • J.G. Hardy, E. Larrañeta, R.F. Donnelly, N. McGoldrick, K. Migalska, M.T.C. McCrudden, N.J. Irwin, L. Donnelly, C.P. McCoy, Mol. Pharm. 13, 907 (2016)

    Article  Google Scholar 

  • M. Labib, E.H. Sargent, S.O. Kelley, Chem. Rev. 116, 9001 (2016)

    Article  Google Scholar 

  • C.G. Li, C.Y. Lee, K. Lee, H. Jung, Biomed. Microdevices 15, 17 (2013)

    Article  Google Scholar 

  • J. Lundberg, M. Rudling, B. Angelin, Curr. Opin. Lipidol. 24, 327 (2013)

    Article  Google Scholar 

  • N.T.M. Yoshikawa, T. Yabuuchi, Y. Shimomura, H. Kakigi, H. Hayashi, H. Ohgushi, International Journal of Medical and Health Sciences. 3, 89 (2009)

    Google Scholar 

  • B. Martin, D. Hartmut, Trends Anal. Chem. 25, 674 (2006)

    Article  Google Scholar 

  • P.R. Miller, X. Xiao, I. Brener, D.B. Burckel, R. Narayan, R. Polsky, Advanced Healthcare Materials. 3, 876 (2014)

    Article  Google Scholar 

  • H. Miyoshi, T. Ehashi, N. Ohshima, A. Jagawa, Artif. Organs 34, 609 (2010)

    Article  Google Scholar 

  • E.V. Mukerjee, S.D. Collins, R.R. Isseroff, R.L. Smith, Sensors & Actuators A Physical. 114, 267 (2015)

    Article  Google Scholar 

  • S. Paliwal, B.H. Hwang, K.Y. Tsai, S. Mitragotri, European Journal of Pharmaceutical Sciences Official Journal of the European Federation for Pharmaceutical Sciences. 50, 546 (2013)

    Article  Google Scholar 

  • P. Parini, L. Johansson, A. Br?Ijersén, B. Angelin, M. Rudling, Eur. J. Clin. Investig. 36, 98(2010)

  • R. Polsky, R. Narayan, P. Miller, J. Mater. Chem. B 4, 1379 (2016)

    Article  Google Scholar 

  • A.V. Romanyuk, V.N. Zvezdin, S. Pradnya, M.I. Grenader, Z. Marina, M.R. Prausnitz, Anal. Chem. 86, 10520 (2014)

    Article  Google Scholar 

  • R.K. Sivamani, L. Dorian, H.I. Maibach, Expert Opinion on Drug Delivery. 4, 19 (2007)

    Article  Google Scholar 

  • S.N. Thennadil, J.L. Rennert, B.J. Wenzel, K.H. Hazen, T.L. Ruchti, M.B. Block, Diabetes Technol. Ther. 3, 357 (2001)

    Article  Google Scholar 

  • W. Togami, A. Sei, T. Okada, T. Taniwaki, T. Fujimoto, T. Nakamura, S. Tahata, Y. Nakanishi, H. Mizuta, J. Biomed. Mater. Res. A 102, 247 (2014)

    Article  Google Scholar 

  • J.B. Vaught, M.K. Henderson, IARC Sci. Publ. 23 (2011)

  • L. Ventrelli, L. Marsilio Strambini, G. Barillaro, Advanced Healthcare Materials. 4, 2606 (2016)

    Article  Google Scholar 

  • P.M. Wang, M. Cornwell, M.R. Prausnitz, Diabetes Technol. Ther. 7, 131 (2005)

    Article  Google Scholar 

  • Y. Wang, Y. Zheng, W. He, C. Wang, Y. Sun, K. Qiao, X. Wang, L. Gao, Composites Part B. 114, 149 (2017)

    Article  Google Scholar 

  • Y. Wu, Q.S. Zhang, G. Qin, Y. Gao, Biomed. Microdevices 10, 601 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Fujian Province (Grant No.2019 J01806), the Education Department of Fujian Province (Grant No. JZ160470), the Putian Science and Technology Bureau (Grant No. 2018SP3004) and Training Program of Innovation and Entrepreneurship for Undergraduates (Grant No. 201811498003 and 201811498027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Chen.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Wang, M., Ye, Y. et al. Fabrication of sponge-forming microneedle patch for rapidly sampling interstitial fluid for analysis. Biomed Microdevices 21, 63 (2019). https://doi.org/10.1007/s10544-019-0413-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-019-0413-x

Keywords

Navigation