Skip to main content

Advertisement

Log in

Target capturing performance of microfluidic channel surface immobilized aptamers: the effects of spacer lengths

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Aptamers have been widely used to recognize and capture their targets in sensitive detection applications, such as in detections of circulating tumor cells. In this study, we investigate the effects of different lengths of oligo-T spacers on surface tethered sgc8 aptamers and their target capturing performances. To achieve this, sgc8 aptamers were immobilized onto microfluidic channel surfaces via oligo-T spacers of different lengths, and the target capturing performances of these immobilized aptamers were studied using CCRF-CEM cells. We demonstrate that the capturing performances of the immobilized aptamers were significantly affected by steric hindrance. Our results also show that aptamers immobilized on surfaces via spacers of ten Ts demonstrated the best cell capturing performances; aptamers with either too short or too long oligo-T spacers showed reduced cell capturing performances. Therefore it can be concluded that spacer optimizations are critically important for surface tethered aptamers that are commonly used in microfluidic devices for sensitive target sensing and detections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • W.J. Allard et al., Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 10, 6897–6904 (2004)

    Article  Google Scholar 

  • A. Alva et al., Circulating tumor cells as potential biomarkers in bladder cancer. J. Urol. 194, 790–798 (2015)

    Article  Google Scholar 

  • S. Bellaousov, J.S. Reuter, M.G. Seetin, D.H. Mathews, RNAstructure: Web servers for RNA secondary structure prediction and analysis. NAR 41, W471–W474 (2013)

    Article  Google Scholar 

  • L. Cao et al., Visual and high-throughput detection of cancer cells using a graphene oxide-based FRET aptasensing microfluidic chip. LChip 12, 4864–4869 (2012)

    Google Scholar 

  • J. Chen, J. Li, Y. Sun, Microfluidic approaches for cancer cell detection, characterization, and separation. LChip 12, 1753–1767 (2012)

    Google Scholar 

  • D.C. Danila, M. Fleisher, H.I. Scher, Circulating tumor cells as biomarkers in prostate cancer. Clin. Cancer Res. 17, 3903–3912 (2011)

    Article  Google Scholar 

  • M. Fenech, L. Haya, in Cardiovascular mechanics. Blood flow mechanics (CRC Press, 2018), pp. 63–89

  • I.J. Fidler, The pathogenesis of cancer metastasis: the'seed and soil'hypothesis revisited. Nat. Rev. Cancer 3, 453–458 (2003)

    Article  Google Scholar 

  • G.P. Gupta, J. Massagué, Cancer metastasis: Building a framework. Cell 127, 679–695 (2006)

    Article  Google Scholar 

  • H.O. Ham, Z. Liu, K. Lau, H. Lee, P.B. Messersmith, Facile DNA immobilization on surfaces through a catecholamine polymer. Angew. Chem. 123, 758–762 (2011)

    Article  Google Scholar 

  • S. Hamd-Ghadareh, A. Salimi, F. Fathi, S. Bahrami, An amplified comparative fluorescence resonance energy transfer immunosensing of CA125 tumor marker and ovarian cancer cells using green and economic carbon dots for bio-applications in labeling, imaging and sensing. Biosens. Bioelectron. 96, 308–316 (2017)

    Article  Google Scholar 

  • X Hao, et al., Aptamer surface functionalization of microfluidic devices using dendrimers as multi-handled templates and its application in sensitive detections of foodborne pathogenic bacteria analytica chimica acta 2019

  • J.K. Herr, J.E. Smith, C.D. Medley, D. Shangguan, W. Tan, Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. AnaCh 78, 2918–2924 (2006)

    Google Scholar 

  • J. Horak, C. Dincer, H. Bakirci, G. Urban, Sensitive, rapid and quantitative detection of substance P in serum samples using an integrated microfluidic immunochip. Biosens. Bioelectron. 58, 186–192 (2014)

    Article  Google Scholar 

  • A.B. Iliuk, L. Hu, W.A. Tao, Aptamer in bioanalytical applications. AnaCh 83, 4440–4452 (2011)

    Google Scholar 

  • A. Jemal, F. Bray, M.M. Center, J. Ferlay, E. Ward, D. Forman, Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011)

    Article  Google Scholar 

  • Y. Jiang, S. Zou, X. Cao, A simple dendrimer-aptamer based microfluidic platform for E. coli O157: H7 detection and signal intensification by rolling circle amplification. Sensors Actuators B Chem. 251, 976–984 (2017)

    Article  Google Scholar 

  • R. Kong, Z. Chen, M. Ye, X. Zhang, W. Tan, Cell-SELEX-based aptamer-conjugated nanomaterials for enhanced targeting of cancer cells. SCIENCE CHINA Chem. 54, 1218 (2011)

    Article  Google Scholar 

  • Y.-H. Lao, K. Peck, L.-C. Chen, Enhancement of aptamer microarray sensitivity through spacer optimization and avidity effect. AnaCh 81, 1747–1754 (2009)

    Google Scholar 

  • S. Lin et al., Luminescence switch-on detection of protein tyrosine kinase-7 using a G-quadruplex-selective probe. Chem. Sci. 6, 4284–4290 (2015)

    Article  Google Scholar 

  • W. Liu, X. Zhou, D. Xing, Rapid and reliable microRNA detection by stacking hybridization on electrochemiluminescent chip system. Biosens. Bioelectron. 58, 388–394 (2014)

    Article  Google Scholar 

  • D.H. Mathews, Using the RNAstructure software package to predict conserved rna structures current protocols in bioinformatics:12.14. 11–12.14 2014

  • E. Ouellet, C.W.T. Yang, T. Lin, L.L. Yang, E.T. Lagally, Novel carboxyl-amine bonding methods for poly (dimethylsiloxane)-based devices. Langmuir 26, 11609–11614 (2010)

    Article  Google Scholar 

  • K. Pantel, C. Alix-Panabières, Detection methods of circulating tumor cells. J Thorac Dis 4, 446 (2012)

    Google Scholar 

  • P. Pinzani et al., Isolation by size of epithelial tumor cells in peripheral blood of patients with breast cancer: Correlation with real-time reverse transcriptase–polymerase chain reaction results and feasibility of molecular analysis by laser microdissection. Hum. Pathol. 37, 711–718 (2006)

    Article  Google Scholar 

  • S. Prabakaran, S. Jayaraman, D.H. Minh, S.K. Sinha, The role of functional end groups of perfluoropolyether (Z-dol and Z-03) lubricants in augmenting the tribology of SU-8 composites. Tribol. Lett. 56, 423–434 (2014)

    Article  Google Scholar 

  • Y. Qin, P. Yeh, X. Hao, X. Cao, Developing an ultra non-fouling SU-8 and PDMS hybrid microfluidic device by poly (amidoamine) engraftment. Colloids Surf. B Biointerfaces 127, 247–255 (2015)

    Article  Google Scholar 

  • E. Racila, D. Euhus, A.J. Weiss, C. Rao, J. McConnell, L.W. Terstappen, J.W. Uhr, Detection and characterization of carcinoma cells in the blood. Proc. Natl. Acad. Sci. 95, 4589–4594 (1998)

    Article  Google Scholar 

  • V.J. Ruigrok, M. Levisson, M.H. Eppink, H. Smidt, J. Van Der Oost, Alternative affinity tools: More attractive than antibodies? Biochem. J. 436, 1–13 (2011)

    Article  Google Scholar 

  • T.N. Seyfried, L.C. Huysentruyt, On the origin of cancer metastasis. Crit. Rev. Oncog. 18, 43 (2013)

    Article  Google Scholar 

  • D. Shangguan et al., Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl. Acad. Sci. 103, 11838–11843 (2006)

    Article  Google Scholar 

  • W. Sheng, T. Chen, R. Kamath, X. Xiong, W. Tan, Z.H. Fan, Aptamer-enabled efficient isolation of cancer cells from whole blood using a microfluidic device. AnaCh 84, 4199–4206 (2012)

    Google Scholar 

  • E. Southern, K. Mir, M. Shchepinov, Molecular interactions on microarrays. Nat. Genet. 21, 5–9 (1999a)

    Article  Google Scholar 

  • E. Southern, K. Mir, M. Shchepinov, Molecular interactions on microarrays. Nat. Genet. 21, 5 (1999b)

    Article  Google Scholar 

  • V. Souza e Silva et al., Evaluation of circulating tumor cells (CTCs) as a potential biomarker in patients with colorectal cancer (CRC): A prospective analysis. Proc. Am. Soc. Clin. Oncol. 32, e22016 (2014)

    Article  Google Scholar 

  • P.S. Steeg, Tumor metastasis: Mechanistic insights and clinical challenges. Nat. Med. 12, 895–904 (2006)

    Article  Google Scholar 

  • H. Stoll, H. Kiessling, M. Stelzle, H.P. Wendel, J. Schütte, B. Hagmeyer, M. Avci-Adali, Microfluidic chip system for the selection and enrichment of cell binding aptamers. Biomicrofluidics 9, 034111 (2015)

    Article  Google Scholar 

  • S. Taylor, S. Smith, B. Windle, A. Guiseppi-Elie, Impact of surface chemistry and blocking strategies on DNA microarrays. NAR 31, e87–e87 (2003)

    Article  Google Scholar 

  • T. Thorsen, R.W. Roberts, F.H. Arnold, S.R. Quake, Dynamic pattern formation in a vesicle-generating microfluidic device. PhRvL 86, 4163 (2001)

    Google Scholar 

  • F. Walther, P. Davydovskaya, S. Zürcher, M. Kaiser, H. Herberg, A.M. Gigler, R.W. Stark, Stability of the hydrophilic behavior of oxygen plasma activated SU-8. JMiMi 17, 524 (2007)

    Google Scholar 

  • Q. Wang, B. Luo, X. Yang, K. Wang, L. Liu, S. Du, Z. Li, Elucidation of the effect of aptamer immobilization strategies on the interaction between cell and its aptamer using atomic force spectroscopy. J. Mol. Recognit. 29, 151–158 (2016)

    Article  Google Scholar 

  • B. Waybrant, T.R. Pearce, E. Kokkoli, Effect of polyethylene glycol, alkyl, and oligonucleotide spacers on the binding, secondary structure, and self-assembly of fractalkine binding FKN-S2 aptamer-amphiphiles. Langmuir 30, 7465–7474 (2014)

    Article  Google Scholar 

  • M.S. Wicha, D.F. Hayes, Circulating tumor cells: Not all detected cells are bad and not all bad cells are detected. J. Clin. Oncol. 29, 1508–1511 (2011)

    Article  Google Scholar 

  • M. Witt, J.-G. Walter, F. Stahl, Aptamer microarrays—Current status and future prospects. Microarrays 4, 115–132 (2015)

    Article  Google Scholar 

  • J. Xu, S. Li, J. Tan, Y. Wang, G. Luo, Preparation of highly monodisperse droplet in a T-junction microfluidic device. AIChE 52, 3005–3010 (2006)

    Article  Google Scholar 

  • Y. Xu, J.A. Phillips, J. Yan, Q. Li, Z.H. Fan, W. Tan, Aptamer-based microfluidic device for enrichment, sorting, and detection of multiple cancer cells. AnaCh 81, 7436–7442 (2009)

    Google Scholar 

  • P.Y. Yeh, Z. Zhang, M. Lin, X. Cao, Nonfouling hydrophilic poly (ethylene glycol) engraftment strategy for PDMS/SU-8 heterogeneous microfluidic devices. Langmuir 28, 16227–16236 (2012)

    Article  Google Scholar 

  • D. Yongabi et al., Cell detection by surface imprinted polymers SIPs: A study to unravel the recognition mechanisms. Sensors Actuators B Chem. 255, 907–917 (2018)

    Article  Google Scholar 

  • Z. Zhang, P. Zhao, G. Xiao, The fabrication of polymer microfluidic devices using a solid-to-solid interfacial polyaddition. Polymer 50, 5358–5361 (2009)

    Article  Google Scholar 

  • X. Zhao, Y. Su, Y. Li, R. Zhang, J. Zhao, Z. Jiang, Engineering amphiphilic membrane surfaces based on PEO and PDMS segments for improved antifouling performances. J. Membr. Sci. 450, 111–123 (2014)

    Article  Google Scholar 

  • G. Zhu, M. Lübbecke, J.G. Walter, F. Stahl, T. Scheper, Characterization of optimal aptamer-microarray binding chemistry and spacer design. Chem. Eng. Technol. 34, 2022–2028 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and Ontario Centers of Excellence (OCE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xudong Cao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Yang, X., Zhang, J. et al. Target capturing performance of microfluidic channel surface immobilized aptamers: the effects of spacer lengths. Biomed Microdevices 21, 54 (2019). https://doi.org/10.1007/s10544-019-0403-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-019-0403-z

Keywords

Navigation