Skip to main content
Log in

MEMS measurements of single cell stiffness decay due to cyclic mechanical loading

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The goal of this study was to measure the mechanical stiffness of individual cells and to observe changes due to the application of repeated cell mechanical loads. 28 single baker’s yeast cells (Saccharomyces cerevisiae) were fatigue tested and had their stiffness measured during repetitive loading cycles performed by a MEMS squeezer in aqueous media. Electrothermal micro-actuators compressed individual cells against a reference back spring; cell and spring motions were measured using a FFT image analysis technique with ~10 nm resolution. Cell stiffness was calculated based on measurements of cell elongation vs. applied force which resulted in stiffness values in the 2–10 N/m range. The effect of increased force was studied for cells mechanically cycled 37 times. Cell stiffness decreased as the force and the cycle number increased. After 37 loading cycles (~4 min), forces of 0.24, 0.29, 0.31, and 0.33 μN caused stiffness drops of 5%, 13%, 31% and 41% respectively. Cells force was then set to 0.29 μN and cells were tested over longer runs of 118 and 268 cycles. After 118 cycles (~12 min) cells experienced an average stiffness drop of 68%. After 268 cycles (~25 min) cells had a stiffness drop of 77%, and appeared to reach a stiffness plateau of 20–25% of the initial stiffness after approximately 200 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • J. Arfsten, S. Leupold, C. Bradtmöller, I. Kampen, A. Kwade, Colloids Surf. B: Biointerfaces (2010). doi:10.1016/j.colsurfb.2010.04.011

  • Associated British Foods, Fleischmann's Active Dry Yeast (2017), http://www.breadworld.com/product/active-dry-yeast. Accessed May 2017

  • B. Barazani, S. Warnat, T. Hubbard, Electr. Comput. Eng. (CCECE), 2015 I.E. 28th Canadian Conference on (2015) doi:10.1109/CCECE.2015.7129090

  • B. Barazani, S. Warnat, A. Fine, T. Hubbard, J. Micromech. Microeng. (2017). doi:10.1088/1361-6439/27/2/025002

  • J. Carter, A. Cowen, B. Hardy, R. Mahadevan, M. Stonefield, S. Wilcenski, PolyMUMPs design handbook: A Mumps (R) Process. (MEMSCAP Inc, 2005)

  • A. Corigliano, L. Domenella, H.D. Espinosa, Y. Zhu, Sens. Lett. 5(3–4), 592–607 (2007)

    Article  Google Scholar 

  • A. Corigliano, L. Domenella, G. Langfelder, Exp. Mech. (2010). doi:10.1007/s11340-009-9266-1

  • S. E. Cross, Y.S. Jin, J. Rao, J.K. Gimzewski, Nat. Nanotechnol. (2007)

  • D. Desmaële, M. Boukallel, S. Régnier, J. Biomech. (2011). doi:10.1016/j.jbiomech.2011.02.085

  • B.R. Gibson, S.J. Lawrence, J.P.R. Leclaire, C.D. Powell, K.A. Smart, FEMS Microbiol. Rev. (2007). doi:10.1111/j.1574-6976.2007.00076.x

  • R.M. Hochmuth, J. Biomech. (2000). doi:10.1016/S0021-9290(99)00175-X

  • J.N. James, V. Mukundan, D. Bernstein, L.P. Beth, Pediatr. Res. (2008). doi:10.1203/PDR.0b013e31816b2ec4

  • K. Kim, X. Liu, Y. Zhang, Y. Sun, J. Micromech. Microeng. (2008). doi:10.1088/0960-1317/18/5/055013

  • D. Kim, P.K. Wong, J. Park, A. Levchenko, Y. Sun, Annu. Rev. Biomed. Eng. (2009)

  • Y. Lai, J. McDonald, M. Kujath, T. Hubbard, J. Micromech. Microeng. (2004)

  • J.B. Layfield, J.D. Sheppard, MBAA TQ 52(3), 132 (2015)

    Google Scholar 

  • G.Y.H. Lee, C.T. Lim, Trends Biotechnol. (2007). doi:10.1016/j.tibtech.2007.01.005

  • Q.S. Li, G.Y.H. Lee, C.N. Ong, C.T. Lim, Biochem (Biophys. Res, Commun, 2008). doi:10.1016/j.bbrc.2008.07.078

    Google Scholar 

  • M. Li, L. Liu, N. Xi, Y. Wang, Z. Dong, X. Xiao, W. Zhang, Sci. China Life Sci. (2012)

  • X. Li, J. Wang, S. Phornsanthia, X. Yin, Q. Li, J. Am. Soc. Brew. Chem. 72(2), 88 (2014)

    Google Scholar 

  • C. Liu, V.B. Mungurwadi, A.V. Nandi, Foundations of MEMS (Prentice Hall, Upper Saddle River, 2012)

    Google Scholar 

  • O. Loh, A. Vaziri, H. Espinosa, Exp. Mech. (2009). doi:10.1007/s11340-007-9099-8

  • W.H. Mager, J. Winderickx, Trends Pharmacol. Sci. (2005). doi:10.1016/j.tips.2005.03.004

  • H. Mashmoushy, Z. Zhang, C.R. Thomas, Biotechnol. Tech. (1998)

  • M. Mattiazzi, U. Petrovič, I. Križaj, Toxicon (2012)

  • R. Merkel, R. Simson, D.A. Simson, M. Hohenadl, A. Boulbitch, E. Wallraff, E. Sackmann, Biophys. J. (2000). doi:10.1016/S0006-3495(00)76329-6

  • D.R. Mills, Food Res. 6, 361 (1941)

    Article  Google Scholar 

  • V. Mukundan, B.L. Pruitt, J. Microelectromech. Syst. (2009). doi:10.1109/JMEMS.2009.2013398

  • V. Mukundan, W. Nelson, B. Pruitt, Biomed. Microdevices (2013). doi:10.1007/s10544-012-9693-0

  • C.D. Powell, S.M. Van Zandycke, D.E. Quain, K.A. Smart, Microbiology (2000)

  • A. Robinson, PhD thesis, University of Cape Town, South Africa (2001)

  • M.J. Rosenbluth, W.A. Lam, D.A. Fletcher, Biophys. J. (2006)

  • D. Sameoto, T. Hubbard, M. Kujath, J. Micromech. Microeng. (2004)

  • D. Serrell, T. Oreskovic, A. Slifka, R. Mahajan, D. Finch, Biomed. Microdevices (2007). doi:10.1007/s10544-006-9032-4

  • D. Serrell, J. Law, A. Slifka, R. Mahajan, D. Finch, Biomed. Microdevices (2008). doi:10.1007/s10544-008-9202-7

  • E. Smith, Z. Zhang, C.R.K. Thomas, E. Moxham, A.P.J. Middelberg, The mechanical properties of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 97, 9871 (2000)

    Article  Google Scholar 

  • R. A. Stafford, in Brewing Yeast Fermentation Performance, ed. By K. Smart. (Blackwell Science, Oxford, 2003), p. 39

  • S. Suresh, Acta Biomater. (2007)

  • S. Suresh, J. Spatz, J.P. Mills, A. Micoulet, M. Dao, C.T. Lim, M. Beil, T. Seufferlein, Acta Biomater. (2005)

  • K. Tsukada, E. Sekizuka, C. Oshio, H. Minamitani, Microvasc. Res. (2001). doi:10.1006/mvre.2001.2307

  • D. Vella, A. Ajdari, A. Vaziri, A. Boudaoud, J.R. Soc, Interface (2012). doi:10.1098/rsif.2011.0352

  • G.M. Walker, Yeast Physiology and Biotechnology (J. Wiley & Sons, Chichester; Toronto, 1998)

    Google Scholar 

  • S. Warnat, H. King, R. Schwartz, M. Kujath, T. Hubbard, MRS Proc. (2014). doi:10.1557/opl.201.58

  • S. Warnat, H. King, C. Forbrigger, T. Hubbard, PolyMUMPs MEMS device to measure mechanical stiffness of single cells in aqueous media. J. Micromech. Microeng. (2015). doi:10.1088/0960-1317/25/2/025011

  • C. Yamahata, E. Sarajlic, G.J.M. Krijnen, J. Microelectromech. Syst. (2010)

  • S. Yang, T. Saif, Exp. Cell Res. (2005a). doi:10.1016/j.yexcr.2004.12.026

  • S. Yang, T. Saif, Rev. Sci. Instrum. (2005b). doi:10.1063/1.1863792

  • S. Yang, M.T. Saif, Acta Biomater. (2007). doi:10.1016/j.actbio.2006.07.005

  • H. Zhang, K. Liu, J. R. Soc. Interface (2008). doi:10.1098/rsif.2008.0052

  • W. Zhang, M. Gnerlich, J.J. Paly, Y. Sun, G. Jing, A. Voloshin, S. Tatic-Lucic, A polymer V-shaped electrothermal actuator array for biological applications. J. Micromech. Microeng. 18(7), 8 (2008). doi:10.1088/0960–1317/18/7/075020

    Article  Google Scholar 

  • Y. Zhu, A. Corigliano, H.D. Espinosa, J. Micromech. Microeng. (2006). doi:10.1088/0960-1317/16/2/008

Download references

Acknowledgements

This work was funded by the NSERC - Natural Sciences and Engineering Research Council of Canada, and fabrication services were obtained through CMC - Canadian Microsystems Corporation. B. Barazani is funded by the Brazilian Federal Entity: National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ted Hubbard.

Electronic supplementary material

ESM 1

(AVI 2480 kb)

ESM 2

(AVI 2476 kb)

ESM 3

(AVI 2118 kb)

Appendix

Appendix

Table 1 Measured cell stiffness over the cycles for each cell tested up to 37 cycles
Table 2 Measured stiffness of cells tested up to 118 cycles
Table 3 Measured stiffness of cells tested up to 268 cycles

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barazani, B., Warnat, S., MacIntosh, A.J. et al. MEMS measurements of single cell stiffness decay due to cyclic mechanical loading. Biomed Microdevices 19, 77 (2017). https://doi.org/10.1007/s10544-017-0219-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0219-7

Keywords

Navigation