Skip to main content
Log in

A novel screen-printed microfluidic paper-based electrochemical device for detection of glucose and uric acid in urine

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

A Correction to this article was published on 07 July 2022

This article has been updated

Abstract

A novel screen-printed microfluidic paper-based analytical device with all-carbon electrode-enabled electrochemical assay (SP-ACE-EC-μPAD) has been developed. The fabrication of these devices involved wax screen-printing, which was simple, low-cost and energy-efficient. The working, counter and reference electrodes were screen-printed using carbon ink on the patterned paper devices. Different wax screen-printing processes were examined and optimized, which led to an improved method with a shorter heating time (~5 s) and a lower heating temperature (75 °C). Different printing screens were examined, with a 300-mesh polyester screen yielding the highest quality wax screen-prints. The carbon electrodes were screen-printed on the μPADs and then examined using cyclic voltammetry. The analytical performance of the SP-ACE-EC-μPADs for the detection of glucose and uric acid in standard solutions was investigated. The results were reproducible, with a linear relationship [R2 = 0.9987 (glucose) or 0.9997 (uric acid)] within the concentration range of interest, and with detection limits as low as 0.35 mM (glucose) and 0.08 mM (uric acid). To determine the clinical utility of the μPADs, chronoamperometry was used to analyze glucose and uric acid in real urine samples using the standard addition method. Our devices were able to detect the analytes of interest in complex real-world biological samples, and have the potential for use in a wide variety of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  • K. Ariga, Y. Yamauchi, G. Rydzek, Q.M. Ji, Y. Yonamine, K.C.W. Wu, J.P. Hill, Chem. Lett. 43, 36–68 (2014)

    Article  Google Scholar 

  • R.F. Carvalhal, M.S. Kfouri, M.H.D. Piazetta, A.L. Gobbi, L.T. Kubota, Anal. Chem. 82, 1162–1165 (2010)

    Article  Google Scholar 

  • L. Chen, C.S. Zhang, D. Xing, Sens. Actuators B 237, 308-317 (2016)

  • X.Y. Cheng, S.B. Lowe, P.J. Reece, J.J. Gooding, Chem. Soc. Rev. 43, 2680–2700 (2014)

    Article  Google Scholar 

  • J.L. Delaney, C.F. Hogan, J. Tian, W. Shen, Anal. Chem. 83, 1300–1306 (2011)

    Article  Google Scholar 

  • J.L. Delaney, E.H. Doeven, A.J. Harsant, C.F. Hogan, Anal. Chim. Acta 790, 56–60 (2013)

    Article  Google Scholar 

  • N. Dossi, R. Toniolo, E. Piccin, S. Susmel, A. Pizzariello, G. Bontempelli, Electroanalysis 25, 2515–2522 (2013)

    Article  Google Scholar 

  • W. Dungchai, O. Chailapakul, C.S. Henry, Anal. Chem. 81, 5821–5826 (2009)

    Article  Google Scholar 

  • W. Dungchai, O. Chailapakul, C.S. Henry, Analyst 136, 77–82 (2011)

    Article  Google Scholar 

  • S. Hasoň, V. Vetterl, F. Jelen, M. Fojta, Electrochim. Acta 54, 1864–1873 (2009)

    Article  Google Scholar 

  • D. Iveković, M. Japec, M. Solar, N. Živković, Int. J. Electrochem. Sci. 7, 3252–3264 (2012)

    Google Scholar 

  • M. Iwamoto, S. Tokonami, H. Shiigi, T. Nagaoka, Res. Chem. Intermed. 35, 919–930 (2009)

    Article  Google Scholar 

  • L. Jiang, M. Mancuso, Z. Lu, G. Akar, E. Cesarman, D. Erickson, Sci. Rep. 4, 4137 (2014)

    Article  Google Scholar 

  • P. Kanyong, R.M. Pemberton, S.K. Jackson, J.P. Hart, Anal. Biochem. 428, 39–43 (2012)

    Article  Google Scholar 

  • F.Y. Kong, S.X. Gu, W.W. Li, T.T. Chen, Q. Xu, W. Wang, Biosens. Bioelectron. 56, 77–82 (2014)

    Article  Google Scholar 

  • C.S.K. Lawrence, S.N. Tan, C.Z. Floresca, Sens. Actuators B 193, 536–541 (2014)

  • H. Liu, R.M. Crooks, Anal. Chem. 84, 2528–2532 (2012)

    Article  Google Scholar 

  • M. Liu, C.S. Zhang, F.F. Liu, Anal. Chim. Acta 891, 234–246 (2015)

    Article  Google Scholar 

  • Y. Lu, W.W. Shi, L. Jiang, J.H. Qin, B.C. Lin, Electrophoresis 30, 1497–1500 (2009)

    Article  Google Scholar 

  • A. Määttänen, D. Fors, S. Wang, D. Valtakari, P. Ihalainen, J. Peltonen, Sens. Actuators B 160, 1404–1412 (2011)

    Article  Google Scholar 

  • A. Määttänen, U. Vanamo, P. Ihalainen, P. Pulkkinen, H. Tenhu, J. Bobacka, J. Peltonen, Sens. Actuators B 177, 153–162 (2013)

  • A. Määttänen, A. Fallarero, J. Kujala, P. Ihalainen, P. Vuorela, J. Peltonen, AMB Express 4, 32 (2014)

    Article  Google Scholar 

  • V. Main, K. Kadimisetty, S. Malla, A.A. Joshi, J.F. Rusling, Environ. Sci. Technol. 47, 1937–1944 (2013)

    Article  Google Scholar 

  • A.W. Martinez, S.T. Phillips, M.J. Butte, G.M. Whitesides, Angew. Chem. Int. Ed. 46, 1318–1320 (2007)

    Article  Google Scholar 

  • A.W. Martinez, S.T. Phillips, G.M. Whitesides, Anal. Chem. 82, 3–10 (2010)

    Article  Google Scholar 

  • Z. Nie, F. Deiss, X. Liu, O. Akbulut, G.M. Whitesides, Lab Chip 10, 3163–3169 (2010a)

    Article  Google Scholar 

  • Z. Nie, C.A. Nijhuis, J. Gong, X. Chen, A. Kumachev, A.W. Martinez, M. Narovlyansky, G.M. Whitesides, Lab Chip 10, 477–483 (2010b)

    Article  Google Scholar 

  • J. Noiphung, T. Songjaroen, W. Dungchai, C.S. Henry, O. Chailapakul, W. Laiwattanapaisal, Anal. Chim. Acta 788, 39–45 (2013)

    Article  Google Scholar 

  • T. Nurak, N. Praphairaksit, O. Chailapakul, Talanta 114, 291–296 (2013)

    Article  Google Scholar 

  • P. Rattanarat, W. Dungchai, D. Cate, J. Volckens, O. Chailapakul, C.S. Henry, Anal. Chem. 86, 3555–3562 (2014)

    Article  Google Scholar 

  • M. Santhiago, L.T. Kubota, Sens. Actuators B 177, 224–230 (2013)

  • L.Y. Shiroma, M. Santhiago, A.L. Gobbic, L.T. Kubota, Anal. Chim. Acta 725, 44–50 (2012)

    Article  Google Scholar 

  • T. Songjaroen, W. Dungchai, O. Chailapakul, W. Laiwattanapaisal, Talanta 85, 2587–2593 (2011)

    Article  Google Scholar 

  • S.N. Tan, L. Ge, W. Wang, Anal. Chem. 82, 8844–8847 (2010)

    Article  Google Scholar 

  • S.N. Tan, L. Ge, H.Y. Tan, W.K. Loke, J. Gao, W. Wang, Anal. Chem. 84, 10071–10076 (2012)

    Article  Google Scholar 

  • N.K. Thom, G.G. Lewis, K. Yeung, S.T. Phillips, RSC Adv. 4, 1334–1340 (2014)

    Article  Google Scholar 

  • Y.T. Wang, L. Yu, Z.Q. Zhu, J. Zhang, J.Z. Zhu, C.H. Fan, Sens. Actuators B 136, 332–337 (2009)

  • S.M. Wang, L. Ge, X.R. Song, J.H. Yu, S.G. Ge, J.D. Huang, F. Zeng, Biosens. Bioelectron. 31, 212–218 (2012)

    Article  Google Scholar 

  • Y.H. Wang, S.M. Wang, S.G. Ge, S.W. Wang, M. Yan, D.J. Zang, J.H. Yu, Anal. Methods 5, 1328–1336 (2013)

    Article  Google Scholar 

  • Y.H. Wang, L. Ge, P.P. Wang, M. Yan, J.H. Yu, S.G. Ge, Chem. Commun. 50, 1947–1949 (2014)

    Article  Google Scholar 

  • E. WitkowskaNery, M. Santhiago, L.T. Kubota, Electroanalysis 28, 2245-2252 (2016)

  • Y. Xiang, Y. Lu, Nat. Chem. 3, 697–703 (2011)

    Article  Google Scholar 

  • A.K. Yetisen, M.S. Akram, C.R. Lowe, Lab Chip 13, 2210–2251 (2013)

    Article  Google Scholar 

  • F.F. Zhang, X.L. Wang, S.Y. Ai, Z.D. Sun, Q. Wan, Z.Q. Zhu, Y.Z. Xian, L.T. Jin, K. Yamamoto, Anal. Chim. Acta 519, 155–160 (2004)

    Article  Google Scholar 

  • C.S. Zhang, D. Xing, Y.Y. Li, Biotechnol. Adv. 25, 483–514 (2007)

    Article  Google Scholar 

  • C. Zhao, M.M. Thuo, X.Y. Liu, Sci. Technol. Adv. Mater. 14, 054402 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (No. 81571765), Guangzhou Science and Technology Program (No. 2014 J4100030), and Guangdong Science and Technology Program (No. 2014A020212503; No. 2016A020215143). We thank Dr. Bin Wu at Guangzhou First People’s Hospital for his help in collecting the urine samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunsun Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

High Resolution Image (DOC 6401 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Zhang, C. A novel screen-printed microfluidic paper-based electrochemical device for detection of glucose and uric acid in urine. Biomed Microdevices 18, 92 (2016). https://doi.org/10.1007/s10544-016-0115-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0115-6

Keywords

Navigation