Skip to main content
Log in

An Hermite-Obreschkoff method for stiff high-index DAE

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We have developed an implicit Hermite-Obreschkoff method for the numerical solution of stiff high-index differential-algebraic equations (DAEs). On each integration step, this method requires the computation of Taylor coefficients and their gradients to construct and solve a nonlinear system for the numerical solution, which is then projected to satisfy the constraints of the problem. We derive this system, show how to compute its Jacobian through automatic differentiation, and present the ingredients of our method, such as predicting an initial guess for Newton’s method, error estimation, and stepsize and order control. We report numerical results on stiff DAEs illustrating the accuracy and performance of our method, and in particular, its ability to take large steps on stiff problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. There is another HVT: (3, 1), (2, 2), (3, 1); it does not matter which one is chosen.

  2. Also, one can show that for this problem the solution to the HO system at \(t_{n+1}\) is the m vector with components \(x_{1,n+1}^{(l)} = R(h\lambda ) x_{1,n}^{(l)}\), \(l=0,\ldots , m-1\); tedious and omitted here.

References

  1. Barrio, R.: Sensitivity analysis of ODEs/DAEs using the Taylor series method. SIAM J. Sci. Comput. 27, 1929–1947 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. SIAM, Philadelphia (1996)

    MATH  Google Scholar 

  3. Bruno, O., Hoch, D.: Numerical differentiation of approximated functions with limited order-of-accuracy deterioration. SIAM J. Numer. Anal. 50, 1581–1603 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Calvo, M., Lisbona, F., Montijano, J.: On the stability of variable-stepsize Nordsieck BDF methods. SIAM J. Numer. Anal. 24, 844–854 (1987)

    MathSciNet  MATH  Google Scholar 

  5. Carpinelli, M., Gubitosa, M., Mundo, D., Desmet, W.: Automated independent coordinates’ switching for the solution of stiff DAEs with the linearly implicit Euler method. Multibody Sys.Dyn. 36, 67–85 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Cheney, E.W., Southard, T.: A survey of methods for rational approximation, with particular reference to a new method based on a forumla of Darboux. SIAM Rev. 5, 219–231 (1963)

    MathSciNet  MATH  Google Scholar 

  7. Corliss, G.F., Griewank, A., Henneberger, P., Kirlinger, G., Potra, F.A., Stetter, H.J.: High-order stiff ODE solvers via automatic differentiation and rational prediction. In: International Workshop on Numerical Analysis and Its Applications, pp.114–125. Springer, (1996)

  8. Díaz-Rodríguez, M., González-Parra, G., Arenas, A.J.: Nonstandard numerical schemes for modeling a 2-DOF serial robot with rotational spring-damper-actuators. Int. J. Numer. Methods Biomed. Eng. 27, 1211–1224 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Ehle, B.: On Padé approximations to the exponential function and A-stable methods for the numerical solution of initial value problems. SIAM J. Math. Anal. 4, 671–680 (1973)

    MathSciNet  MATH  Google Scholar 

  10. EstévezSchwarz, D., Lamour, R.: Projected explicit and implicit Taylor series methods for DAEs. Numer. Algorithms 88, 615–646 (2021)

    MathSciNet  MATH  Google Scholar 

  11. Gad, E., Nakhla, M., Achar, R., Zhou, Y.: A-stable and L-stable high-order integration methods for solving stiff differential equations. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 28, 1359–1372 (2009)

    Google Scholar 

  12. Griewank, A.: ODE solving via automatic differentiation and rational prediction, Pitman Research Notes in Mathematics Series, (1996), pp.36–56

  13. Griewank, A., Juedes, D., Utke, J.: ADOL-C, a package for the automatic differentiation of algorithms written in C/C++. ACM Trans. Math. Softw. 22, 131–167 (1996)

    MATH  Google Scholar 

  14. Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems, 2nd edn. Springer Berlin, Heidelberg (1993)

  15. Hairer, E., Wanner, G.: Stiff differential equations solved by Radau methods. J. Comput. Appl. Math. 111, 93–111 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Higueras, I.: Numerical methods for stiff index-3 DAEs. Math. Comput. Model. Dyn. Syst. 7, 239–262 (2001)

    MATH  Google Scholar 

  17. Hindmarsh, A., Brown, P., Grant, K., Lee, S., Serban, R., Shumaker, D., Woodward, C.: SUNDIALS: suite of nonlinear and differential/algebraic equation solvers. ACM TOMS 31, 363–396 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Hummel, P., SeebeckJr, C.: A generalization of Taylor’s expansion. Am. Math. Mon. 56, 243–247 (1949)

    MathSciNet  MATH  Google Scholar 

  19. Iavernaro, F., Mazzia, F.: On conjugate-symplecticity properties of a multi-derivative extension of the midpoint and trapezoidal methods. Rend. Semin. Mat 76, 123–134 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Iavernaro, F., Mazzia, F., Mukhametzhanov, M.S., Sergeyev, Y.D.: Conjugate-symplecticity properties of Euler-Maclaurin methods and their implementation on the infinity computer. Appl. Numer. Math. 155, 58–72 (2020)

    MathSciNet  MATH  Google Scholar 

  21. Jay, L.O.: Iterative solution of SPARK methods applied to DAEs. Numer. Algorithms 31, 171–191 (2002)

    MathSciNet  MATH  Google Scholar 

  22. Lamour, R., März, R., Tischendorf, C.: Differential-Algebraic Equations: A Projector Based Analysis. Springer Science & Business Media, Berlin (2013)

    MATH  Google Scholar 

  23. Lamour, R., Monett, D.: A new algorithm for index determination in DAEs using algorithmic differentiation. Numer. Algorithms 58, 261–292 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Mazzia, F.: F.Iavernaro, Test set for initial value problem solvers. Tech. Rep.40, Department of Mathematics, University of Bari, Italy, http://pitagora.dm.uniba.it/testset/ (2003)

  25. Mazzia, F., Sestini, A.: On a class of Hermite-Obreshkov one-step methods with continuous spline extension. Axioms 7, 58 (2018)

    MATH  Google Scholar 

  26. Meir, A., Sharma, A.: An extension of Obreshkov’s formula. SIAM J. Numer. Anal. 5, 488–490 (1968)

    MathSciNet  MATH  Google Scholar 

  27. Milenkovic, P.: Numerical solution of stiff multibody dynamic systems based on kinematic derivatives. J. Dyn. Syst. Meas. Contr. 136, 061001 (2014)

    Google Scholar 

  28. Miller, J.A., Kee, R.J., Westbrook, C.K.: Chemical kinetics and combustion modeling. Annu. Rev. Phys. Chem. 41, 345–387 (1990)

    Google Scholar 

  29. Milne, W.E.: A note on the numerical integration of differential equations. J. Res. Natl. Bur. Stand. 43, 537–542 (1949)

    MathSciNet  Google Scholar 

  30. Moore, R.: Interval Analysis. Prentice-Hall, Englewood (1966)

    MATH  Google Scholar 

  31. Nedialkov, N.S., Jackson, K.R.: An interval Hermite-Obreschkoff method for computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation. Reliab. Comput. 5, 289–310 (1999)

    MathSciNet  MATH  Google Scholar 

  32. Nedialkov, N.S., Pryce, J.D.: Solving differential-algebraic equations by Taylor series (I): computing Taylor coefficients. BIT Numer. Math. 45, 561–591 (2005)

    MathSciNet  MATH  Google Scholar 

  33. Nedialkov, N.S., Pryce, J.D.: Solving differential-algebraic equations by Taylor series (II): computing the system Jacobian. BIT Numer. Math. 47, 121–135 (2007)

    MathSciNet  MATH  Google Scholar 

  34. Nedialkov, N.S., Pryce, J.D.: Solving differential-algebraic equations by Taylor series (III): the DAETS code. JNAIAM J. Numer. Anal. Indust. Appl. Math. 3, 61–80 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Negrut, D., Sandu, A., Haug, E.J., Potra, F.A., Sandu, C.: A Rosenbrock-Nystrom state space implicit approach for the dynamic analysis of mechanical systems: II method and numerical examples. Proc. Inst. Mech. Eng. Part K J. Multibody Dyn. 217, 273–281 (2003)

    Google Scholar 

  36. Nguyen-Ba, T., Yagoub, H., Hao, H., Vaillancourt, R.: Pryce pre-analysis adapted to some DAE solvers. Appl. Math. Comput. 217, 8403–8418 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Nørsett, S.P.: One-step methods of Hermite type for numerical integration of stiff systems. BIT Numer. Math. 14, 63–77 (1974)

    MathSciNet  MATH  Google Scholar 

  38. Obreschkoff, N.: Neue Quadraturformeln, Abh. Preuss. Akad. Wiss. Math. Nat. Kl., 4 (1940)

  39. Obreschkoff, N.: Sur le quadrature mecaniques, Spisanie Bulgar. Akad. Nauk. J. Bulg. Acad. Sci. 65, 191–289 (1942)

    Google Scholar 

  40. Obreshkov, N.: Neue quadraturformeln, Verlag der Akademie der Wissenschaften. In: W. de Gruyter (ed) Kommission bei (1940)

  41. Pantelides, C.C.: The consistent initialization of differential-algebraic systems. SIAM J. Sci. Stat. Comput. 9, 213–231 (1988)

    MathSciNet  MATH  Google Scholar 

  42. Pryce, J.D.: Solving high-index DAEs by Taylor series. Numer. Algorithms 19, 195–211 (1998)

    MathSciNet  MATH  Google Scholar 

  43. Pryce, J.D.: A simple structural analysis method for DAEs. BIT Numer. Math. 41, 364–394 (2001)

    MathSciNet  MATH  Google Scholar 

  44. Scholz, L., Steinbrecher, A.: Regularization of DAEs based on the signature method. BIT Numer. Math. 56, 319–340 (2016)

    MathSciNet  MATH  Google Scholar 

  45. Scholz, L., Steinbrecher, A.: Structural-algebraic regularization for coupled systems of DAEs. BIT Numer. Math. 56, 777–804 (2016)

    MathSciNet  MATH  Google Scholar 

  46. Shampine, L.F.: Implementation of implicit formulas for the solution of ODEs. SIAM J. Sci. Stat. Comput. 1, 103–118 (1980)

    MathSciNet  MATH  Google Scholar 

  47. Shampine, L.F.: Efficient use of implicit formulas with predictor-corrector error estimate. J. Comput. Appl. Math. 7, 33–35 (1981)

    MathSciNet  MATH  Google Scholar 

  48. Söderlind, G., Jay, L., Calvo, M.: Stiffness 1952–2012: sixty years in search of a definition. BIT Numer. Math. 55, 531–558 (2015)

    MathSciNet  MATH  Google Scholar 

  49. Stauning, O., Bendtsen, C.: FADBAD++ web page, (2003). http://www.imm.dtu.dk/fadbad.html

  50. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, vol. 12. Springer, New York (1993)

  51. Wanner, G.: On the integration of stiff differential equations, tech. rep., Université de Genéve, Section de Mathematique, 1211 Genéve 24th, Suisse (1976)

  52. Wanner, G.: On the integration of stiff differential equations. In: Proceedings of the Colloquium on Numerical Analysis, vol. 37 of Internat. Ser. Numer. Math., Basel, 1977, Birkhäuser, pp. 209–226

  53. Zhou, Y.: Stable high order methods for circuit simulation, PhD thesis. Carleton University (2011)

  54. Zolfaghari, R.: Numerical Integration of Stiff Differential-Algebraic Equations, PhD thesis. School of Computational Science and Engineering, McMaster University, Hamilton, Ontario, Canada (2020)

Download references

Acknowledgements

The author thank the anonymous referees, who comments and suggestions helped to improve this article.

Funding

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), FRN RGPIN-2019-07054.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Zolfaghari.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Communicated by Antonella Zanna Munthe-Kaas.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A dprsd: equations of motion

A dprsd: equations of motion

Denote the cartesian coordinates of \(\mathsf {\MakeUppercase {A}}\) and \(\mathsf {\MakeUppercase {B}}\) by \(\mathsf {\MakeUppercase {A}} = (\mathsf {\MakeUppercase {A}}_{x}, \mathsf {\MakeUppercase {A}}_{y})\) and \(\mathsf {\MakeUppercase {B}} = (\mathsf {\MakeUppercase {B}}_{x}, \mathsf {\MakeUppercase {B}}_y)\). The kinetic and potential energies are

$$\begin{aligned} T&= \tfrac{1}{6} {m_1} |\dot{\mathsf {\MakeUppercase {A}}}|^{2} + \tfrac{1}{6} {m_1}{m_2}(|\dot{\mathsf {\MakeUppercase {A}}}|^{2}+\dot{\mathsf {\MakeUppercase {A}}}\cdot \dot{\mathsf {\MakeUppercase {B}}}+ |\dot{\mathsf {\MakeUppercase {B}}}|^{2}), \end{aligned}$$
(A.1)
$$\begin{aligned} V&= \tfrac{1}{2} m_{1}g \mathsf {\MakeUppercase {A}}_{y} + \tfrac{1}{2} m_2g(\mathsf {\MakeUppercase {A}}_{y}+\mathsf {\MakeUppercase {B}}_{y}) + k_{1}(\theta -\alpha )^{2} +k_2(\pi - \theta +\phi - \beta )^{2}, \end{aligned}$$
(A.2)

respectively (\(|\cdot |\) is vector length and \(\cdot \) is dot product), and the Lagrangian is

$$\begin{aligned} \mathscr {L}&= T-V. \end{aligned}$$
(A.3)

We use Rayleigh’s dissipation function

$$\begin{aligned} \mathscr {R}&=\tfrac{1}{2} c_{1} {\dot{\theta }^{2}} + \tfrac{1}{2} c_{2}(\dot{\phi }-\dot{\theta })^{2}. \end{aligned}$$
(A.4)

ODE formulation. With generalized coordinates \(\textbf{q} = (\theta , \phi )\), \( \mathsf {\MakeUppercase {A}}= \ell _1\,(\cos \theta , \sin \theta )\) and \(\mathsf {\MakeUppercase {B}}= \mathsf {\MakeUppercase {A}}+\ell _2\, (\cos \phi , \sin \phi ).\) Using (A.1A.4) in

$$\begin{aligned} \qquad 0 = \frac{\text {d}}{\text {d}t} \frac{\partial \mathscr {L}}{\partial \dot{\textbf{q}}} -\frac{\partial \mathscr {L}}{\partial \textbf{q}} + \frac{\partial \mathscr {R}}{\partial \dot{\textbf{q}}}, \end{aligned}$$

we derive the second-order ODE

$$\begin{aligned} \begin{aligned} 0&= \begin{bmatrix}\left( \tfrac{1}{3}{m_1}+ m_2\right) \ell _1^{2} &{} \tfrac{1}{2} {m_2}\ell _1 \ell _2 \cos (\theta -\phi ) \\ \frac{1}{2}{m_2}\ell _1 \ell _2 \cos (\theta -\phi ) &{} \frac{1}{3}{m_2} \ell _2^{2} \end{bmatrix} \begin{bmatrix}\ddot{\theta }\\ \ddot{\phi }\end{bmatrix} +\tfrac{1}{2}{m_2}\ell _1\ell _2 \sin (\theta -\phi ) \begin{bmatrix}{\dot{\phi }^{2}} \\ -{\dot{\theta }^{2}} \end{bmatrix}\\&\qquad + \begin{bmatrix} \left( \tfrac{1}{2}m_1 +m_2 \right) g\ell _1 \cos \theta + k_1(\theta -\alpha )-k_2 (\pi - \theta +\phi -\beta )\\ \tfrac{1}{2} m_2g\ell _2\cos \phi + k_2(\pi - \theta +\phi -\beta ) \end{bmatrix} \\&\qquad + \begin{bmatrix}c_{1}\dot{\theta }- c_2(\dot{\phi }-\dot{\theta }) \\ c_2(\dot{\phi }-\dot{\theta }) \end{bmatrix} . \end{aligned} \end{aligned}$$
(A.5)

DAE formulation. We chose as generalized coordinates \(\textbf{q} = (\mathsf {\MakeUppercase {A}}_x, \mathsf {\MakeUppercase {A}}_y, \mathsf {\MakeUppercase {B}}_{x} ,\mathsf {\MakeUppercase {B}}_{y})\). Denote \(\mathsf {\MakeUppercase {C}}= \mathsf {\MakeUppercase {B}}-\mathsf {\MakeUppercase {A}}\). We have the index-3, second-order DAE system

$$\begin{aligned} \begin{aligned} 0&= \frac{\text {d}}{\text {d}t} \frac{\partial \mathscr {L}}{\partial \dot{\textbf{q}}_{i}} -\frac{\partial \mathscr {L}}{\partial \textbf{q}_{i}} + \sum _{k=1}^{2} \lambda _{k}\frac{\partial C_{k}}{\partial {\textbf{q}}_{i}}+\frac{\partial \mathscr {R}}{\partial \dot{\textbf{q}_{i}}}, \quad i = 1,\ldots , 4, \\ 0&= C_{1} = |\mathsf {\MakeUppercase {A}}|^{2} -\ell ^{2}, \\ 0&= C_{2} = |\mathsf {\MakeUppercase {C}}|^{2} - \ell _2^{2},\\ 0&= \dot{\theta } -\frac{1}{\ell _1^{2}}(\mathsf {\MakeUppercase {A}}_x\cdot \dot{\mathsf {\MakeUppercase {A}}}_y - \mathsf {\MakeUppercase {A}}_y\cdot \dot{\mathsf {\MakeUppercase {A}}}_x), \\ 0&= \dot{\phi } - \frac{1}{\ell _2^{2}} (\mathsf {\MakeUppercase {C}}_x\cdot \dot{\mathsf {\MakeUppercase {C}}}_y - \mathsf {\MakeUppercase {C}}_y\cdot \dot{\mathsf {\MakeUppercase {C}}}_x) \end{aligned} \end{aligned}$$
(A.6)

in state variables \((\mathsf {\MakeUppercase {A}}_x, \mathsf {\MakeUppercase {A}}_y, \mathsf {\MakeUppercase {B}}_{x} ,\mathsf {\MakeUppercase {B}}_{y}, \lambda _{1}, \lambda _{2}, \theta , \phi )\). Here \(\lambda _{1}\) and \(\lambda _{2}\) are Lagrange multipliers.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolfaghari, R., Nedialkov, N.S. An Hermite-Obreschkoff method for stiff high-index DAE. Bit Numer Math 63, 19 (2023). https://doi.org/10.1007/s10543-023-00955-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10543-023-00955-1

Keywords

Mathematics Subject Classification

Navigation