Skip to main content
Log in

Numerically computable a posteriori-bounds for the stochastic Allen–Cahn equation

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The aim of this paper is the derivation of an a-posteriori error estimate for the numerical method based on an exponential scheme in time and spectral Galerkin methods in space. We obtain analytically a rigorous bound on the conditional mean square error, which is conditioned to the given realization of the data calculated by a numerical method. This bound is explicitly computable and uses only the computed numerical approximation. Thus one can check a-posteriori the error for a given numerical computation for a fixed discretization without relying on an asymptotic result. All estimates are only based on the numerical data and the structure of the equation, but they do not use any a-priori information of the solution, which makes the approach applicable to equations where global existence and uniqueness of solutions is not known. For simplicity of presentation, we develop the method here in a relatively simple situation of a stable one-dimensional Allen-Cahn equation with additive forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alabert, A., Gyöngy, I.: On numerical approximation of stochastic Burgers equation. In: From Stochastic Calculus to Mathematical Finance, pp. 1–15. Springer, Berlin (2006)

  2. Bartels, S.: A posteriori error analysis for time-dependent Ginzburg-Landau type equations. Numer. Math. 99(4), 557–583 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartels, S., Müller, R., Christoph, O.: Robust a priori and a posteriori error analysis for the approximation of Allen-Cahn and Ginzburg-Landau equations past topological changes. SIAM J. Numer. Anal. 49(1), 110–134 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Becker, S., Jentzen, A.: Strong convergence rates for nonlinearity-truncated Euler-type approximations of stochastic Ginzburg-Landau equations. In Press, Stochastic Processes and their Applications (2018)

  5. Becker, S., Gess, B., Jentzen, A., Kloeden, P. E.: Strong convergence rates for explicit space-time discrete numerical approximations of stochastic Allen-Cahn equations. ArXiv (2017)

  6. Blömker, D., Jentzen, A.: Galerkin approximations for the stochastic Burgers equation. SIAM J. Numer. Anal. 51(1), 694–715 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blömker, D., Nolde, C., Robinson, J.C.: Rigorous numerical verification of uniqueness and smoothness in a surface growth model. J. Math. Anal. Appl. 429(1), 311–325 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Blömker, D., Romito, M.: Stochastic PDEs and lack of regularity (A surface growth equation with noise: existence, uniqueness, and blow-up) Jahresber. Dtsch. Math.-Ver. 117(4), 233–286 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Bréhier, C.-E., Goudenége, L.: Weak convergence rates of splitting schemes for the stochastic Allen–Cahn equation. ArXive (2018)

  10. Bréhier, C.-E., Goudenége, L.: Analysis of some splitting schemes for the stochastic Allen–Cahn equation. ArXive (2018)

  11. Butler, T., Dawson, C., Wildey, T.: A posteriori error analysis of stochastic differential equations using polynomial chaos expansions. SIAM J. Sci. Comput. 33(3), 1267–1291 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions. In: 2nd ed., vol. 152 of Encyclopedia of of Mathematics and its Applications. Cambridge University Press, Cambridge (2014)

  13. Georgoulis, E.H., Makridakis, C.: On a posteriori error control for the Allen–Cahn problem. Math. Methods Appl. Sci. 37(2), 173–179 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Goldys, B., Maslowski, B.: The OrnsteinUhlenbeck bridge and applications to Markov semigroups. Stoch. Proc. Appl. 18(10), 1738–1767 (2008)

    Article  MATH  Google Scholar 

  15. Hutzenthaler, M., Jentzen, A.: Numerical Approximations of Stochastic Differential Equations with Non-globally Lipschitz Continuous Coefficients, vol. 236. American Mathematical Society, Providence (2015)

    MATH  Google Scholar 

  16. Hutzenthaler, M., Jentzen, A., Kloeden, P. E.: Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally lipschitz continuous coefficients. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 467, pp. 1563–1576. The Royal Society (2011)

  17. Jentzen, A., Kloeden, P., Winkel, G.: Efficient simulation of nonlinear parabolic SPDEs with additive noise. Ann. Appl. Probab. 21(3), 908–950 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kalpinelli, E.A., Frangos, N.E., Yannacopoulos, A.N.: Numerical methods for hyperbolic SPDEs: a Wiener chaos approach. Stoch. Partial Differ. Equ. Anal. Comput. 1(4), 606–633 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Kloeden, P.E., Lord, G.J., Neuenkirch, A., Shardlow, T.: The exponential integrator scheme for stochastic partial differential equations: pathwise error bounds. J. Comput. Appl. Math. 235(5), 1245–1260 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lord, G.J., Powell, C.E., Shardlow, T.: An Introduction to Computational Stochastic PDEs. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  21. Nolde, C.: Global regularity and uniqueness of solutions in a surface growth model using rigorous a-posteriori methods. Ph.D. thesis, Universitat Augsburg (2017)

  22. Moon, K.-Y., von Schwerin, E., Szepessy, A., Tempone, R.: An adaptive algorithm for ordinary, stochastic and partial differential equations. Recent advances in adaptive computation. Contemp. Math. Amer. Math. Soc. 383, 325–343 (2005)

    Article  MATH  Google Scholar 

  23. Verfürth, R.: posteriori error estimation techniques for finite element methods. In: Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013)

  24. Yang, X., Duan, Y., Guo, Y.: A posteriori error estimates for finite element approximation of unsteady incompressible stochastic Navier-Stokes equations. SIAM J. Numer. Anal. 48(4), 1579–1600 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yang, X., Qi, R., Duan, Y.: A posteriori analysis of finite element discretizations of stochastic partial differential delay equations. J. Differ. Equ. Appl. 18(10), 1649–1663 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, X.: An efficient explicit full discrete scheme for strong approximation of stochastic Allen-Cahn equation. ArXive (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Blömker.

Additional information

Communicated by David Cohen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by the ‘Deutsche Forschungsgemeinschaft’ (DFG) as part of the project BL 535/10-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blömker, D., Kamrani, M. Numerically computable a posteriori-bounds for the stochastic Allen–Cahn equation. Bit Numer Math 59, 647–673 (2019). https://doi.org/10.1007/s10543-019-00745-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-019-00745-8

Keywords

Mathematics Subject Classification

Navigation