Skip to main content
Log in

A normalized representation of super splines of arbitrary degree on Powell–Sabin triangulations

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In the paper, a family of bivariate super spline spaces of arbitrary degree defined on a triangulation with Powell–Sabin refinement is introduced. It includes known spaces of arbitrary smoothness r and degree \(3r-1\) but provides also other choices of spline degree for the same r which, in particular, generalize a known space of \(\mathscr {C}^{1}\) cubic super splines. Minimal determining sets of the proposed super spline spaces of arbitrary degree are presented, and the interpolation problems that uniquely specify their elements are provided. Furthermore, a normalized representation of the discussed splines is considered. It is based on the definition of basis functions that have local supports, are nonnegative, and form a partition of unity. The basis functions share numerous similarities with classical univariate B-splines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alfeld, P., Schumaker, L.L.: Smooth macro-elements based on Powell–Sabin triangle splits. Adv. Comput. Math. 16, 29–46 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, S.K., Liu, H.W.: A bivariate \({{C}}^{1}\) cubic super spline space on Powell–Sabin triangulation. Comput. Math. Appl. 56, 1395–1401 (2008)

  3. Dierckx, P.: On calculating normalized Powell–Sabin B-splines. Comput. Aided Geom. Des. 15, 61–78 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Farin, G.: Curves and Surfaces for CAGD. Morgan Kaufmann Publishers, San Francisco (2002)

    Google Scholar 

  5. Grošelj, J., Krajnc, M.: \({{C}}^{1}\) cubic splines on Powell-Sabin triangulations. Appl. Math. Comput. 272, Part 1, 114–126 (2016)

  6. Lai, M.J.: On \({{C}}^2\) quintic spline functions over triangulations of Powell–Sabin’s type. J. Comput. Appl. Math. 73, 135–155 (1996)

  7. Lai, M.J., Schumaker, L.L.: Macro-elements and stable local bases for splines on Powell–Sabin triangulations. Math. Comput. 72, 335–354 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lai, M.J., Schumaker, L.L.: Spline Functions on Triangulations, Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  9. Lamnii, A., Lamnii, M., Mraoui, H.: Cubic spline quasi-interpolants on Powell–Sabin partitions. BIT Numer Math 54, 1099–1118 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lamnii, M., Mraoui, H., Tijini, A., Zidna, A.: A normalized basis for \({{C}}^1\) cubic super spline space on Powell–Sabin triangulation. Math. Comput. Simul. 99, 108–124 (2014)

  11. Manni, C., Sablonnière, P.: Quadratic spline quasi-interpolants on Powell–Sabin partitions. Adv. Comput. Math. 26, 283–304 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Neamtu, M.: What is the natural generalization of univariate splines to higher dimensions? In: Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surfaces: Oslo 2000, pp. 355–392. Vanderbilt University Press, Saint-Malo (2001)

    Google Scholar 

  13. Powell, M.J.D., Sabin, M.A.: Piecewise quadratic approximations on triangles. ACM T. Math. Softw. 3, 316–325 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ramshaw, L.: Blossoming: a connect-the-dots approach to splines. Tech. Rep. 19 (1987) Digital Systems Research Center

  15. Seidel, H.: An introduction to polar forms. IEEE Comput. Graph. Appl. 13, 38–46 (1993)

    Article  Google Scholar 

  16. Speleers, H.: A normalized basis for quintic Powell–Sabin splines. Comput. Aided Geom. Design 27, 438–457 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Speleers, H.: Construction of normalized B-splines for a family of smooth spline spaces over Powell–Sabin triangulations. Constr. Approx. 37, 41–72 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Speleers, H.: A family of smooth quasi-interpolants defined over Powell–Sabin triangulations. Constr. Approx. 41, 297–324 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Speleers, H.: A new B-spline representation for cubic splines over Powell–Sabin triangulations. Comput. Aided Geom. Des. 37, 42–56 (2015)

    Article  MathSciNet  Google Scholar 

  20. Speleers, H., Dierckx, P., Vandewalle, S.: Local subdivision of Powell–Sabin splines. Comput. Aided Geom. Des. 23, 446–462 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Speleers, H., Dierckx, P., Vandewalle, S.: Numerical solution of partial differential equations with Powell–Sabin splines. J. Comput. Appl. Math. 189, 643–659 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Speleers, H., Dierckx, P., Vandewalle, S.: Quasi-hierarchical Powell–Sabin B-splines. Comput. Aided Geom. Des. 26, 174–191 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Vanraes, E., Windmolders, J., Bultheel, A., Dierckx, P.: Automatic construction of control triangles for subdivided Powell–Sabin splines. Comput. Aided Geom. Des. 21, 671–682 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Windmolders, J., Dierckx, P.: From PS-splines to NURPS. In: Cohen, A., Rabut, C., Schumaker, L. (eds.) Proceedings of Curve and Surface Fitting, pp. 45–54. Vanderbilt University Press, Saint-Malo (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Grošelj.

Additional information

Communicated by Tom Lyche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grošelj, J. A normalized representation of super splines of arbitrary degree on Powell–Sabin triangulations. Bit Numer Math 56, 1257–1280 (2016). https://doi.org/10.1007/s10543-015-0600-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-015-0600-y

Keywords

Mathematics Subject Classification

Navigation