Skip to main content

Advertisement

Log in

Alleviation of cadmium phytotoxicity through melatonin modulated physiological functions, antioxidants, and metabolites in tomato (Solanum lycopersicum L.)

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The rising concentration of cadmium (Cd) builds a harmful effect on human and plant health associated with food chain contagion. Melatonin (MT) is an indole compound. Hence, the experiment was conducted to understand the physiological and biochemical mechanism of Cd detoxification by exogenous MT in tomato. Pots were filled with 30 ppm of Cd spiked soil and different concentration of exogenous MT was given to the plants through seed treatment (250 ppm), foliar spray viz., 25, 50, and 100 ppm, and both, whereas the foliar spray was given at 30 days after transplanting (DAT) and 46 DAT. When the plants are exposed to Cd stress, it reduces the gas exchange characters. The results revealed that foliar spray of 25 ppm of exogenous MT recorded the highest photosynthetic rate, stomatal conductance, and osmotic potential. MT had a direct interaction with reactive oxygen species scavenging by elevating endogenous antioxidant enzymes as well as the metabolites in plants. The contribution of MT foliar spray of 25 ppm at 30 and 46 DAT can mitigate Cd stress and it has potential implications for ensuring food safety and food security in marginal agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ali B, Gill RA, Yang S, Gill MB, Farooq MA, Liu D, Zhou W (2015) Regulation of cadmium-induced proteomic and metabolic changes by 5-aminolevulinic acid in leaves of Brassica napus L. PLoS ONE 10(4):e0123328

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2013) Growth conditions determine different melatonin levels in Lupinus albus L. J Pineal Res 55(2):149–155

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2014) Melatonin: plant growth regulator and/or biostimulator during stress? Trends Plant Sci 19(12):789–797

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2019) Melatonin: a new plant hormone and/or a plant master regulator? Trends Plant Sci 24(1):38–48

    Article  CAS  PubMed  Google Scholar 

  • Ayyaz A, Amir M, Umer S, Iqbal M, Bano H, Gul HS, Farooq MA (2020) Melatonin-induced changes in photosynthetic efficiency as probed by OJIP associated with improved chromium stress tolerance in canola (Brassica napus L.). Heliyon 6(7):e04364

    Article  PubMed  PubMed Central  Google Scholar 

  • Babu RC, Pathan MS, Blum A, Nguyen HT (1999) Comparison of measurement methods of osmotic adjustment in rice cultivars. Crop Sci 39(1):150–158

    Article  Google Scholar 

  • Baker DE, Amacher MC (1983) Nickel, copper, zinc, and cadmium. Methods of soil analysis: part 2 chemical and microbiological properties, vol 9. Soil Science Society of America Inc, Madison, pp 323–336

    Google Scholar 

  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55(403):1607–1621

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1):276–287

    Article  CAS  PubMed  Google Scholar 

  • Bharath P, Gahir S, Raghavendra AS (2021) Abscisic acid-induced stomatal closure: an important component of plant defense against abiotic and biotic stress. Front Plant Sci 12:615114

    Article  PubMed  PubMed Central  Google Scholar 

  • Bingham FT, Page AL, Mahler RJ, Ganje TJ (1975) Growth and cadmium accumulation of plants grown on a soil treated with a cadmium-enriched sewage sludge (Vol. 4, No. 2, pp. 207–211). American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America

  • Cao S, Shao J, Shi L, Xu L, Shen Z, Chen W, Yang Z (2018) Melatonin increases chilling tolerance in postharvest peach fruit by alleviating oxidative damage. Sci Rep 8(1):1–11

    Google Scholar 

  • Cui W, Li L, Gao Z, Wu H, Xie Y, Shen W (2012) Haem oxygenase-1 is involved in salicylic acid-induced alleviation of oxidative stress due to cadmium stress in Medicago sativa. J Exp Bot 63(15):5521–5534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Smeets K (2010) Cadmium stress: an oxidative challenge. Biometals 23(5):927–940

    Article  CAS  PubMed  Google Scholar 

  • Demirbas A (2010) Oil, micronutrient and heavy metal contents of tomatoes. Food Chem 118(3):504–507

    Article  CAS  Google Scholar 

  • Ejaz S, Fahad S, Anjum MA, Nawaz A, Naz S, Hussain S, Ahmad S (2020) Role of osmolytes in the mechanisms of antioxidant defense of plants. Sustain Agric Rev 39:95–117

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Gopalachari NC (1963) Changes in the activities of certain oxidizing enzymes during germination and seedling development of Phaseolus mungo and Sorghum vulgare. Indian J Exp Biol 1(1):98–100

    CAS  Google Scholar 

  • Gu Q, Chen Z, Yu X, Cui W, Pan J, Zhao G, Shen W (2017) Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microRNA-mediated redox homeostasis. Plant Sci 261:28–37

    Article  CAS  PubMed  Google Scholar 

  • Gu Q, Wang C, Xiao Q, Chen Z, Han Y (2021) Melatonin confers plant cadmium tolerance: an update. Int J Mol Sci 22(21):11704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haider FU, Liqun C, Coulter JA, Cheema SA, Wu J, Zhang R, Farooq M (2021) Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol Environ Saf 211:111887

    Article  CAS  PubMed  Google Scholar 

  • Haouari CC, Nasraoui AH, Bouthour D, Houda MD, Daieb CB, Mnai J, Gouia H (2012) Response of tomato (Solanum lycopersicon) to cadmium toxicity: growth, element uptake, chlorophyll content and photosynthesis rate. Afr J Plant Sci 6(1):001–007

    CAS  Google Scholar 

  • Hasan M, Ahammed GJ, Yin L, Shi K, Xia X, Zhou Y, Zhou J (2015) Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Front Plant Sci 6:601

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernández-Ruiz J, Cano A, Arnao MB (2005) Melatonin acts as a growth‐stimulating compound in some monocot species. J Pineal Res 39(2):137–142

    Article  PubMed  Google Scholar 

  • Hill CB, Roessner U (2013) Metabolic profiling of plants by GC-MS. In: Weckwerth W, Kahl G (eds) The handbook of plant metabolomics: metabolite profiling and networking. Wiley, Hoboken, pp 3–23

    Google Scholar 

  • Huang H, Ullah F, Zhou DX, Yi M, Zhao Y (2019) Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci 10:800

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson ML (1973) Soil chemical analysis, vol 498. Pentice Hall of India Pvt Ltd., New Delhi, pp 151–154

    Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63(4):1593–1608

    Article  CAS  PubMed  Google Scholar 

  • Lee HY, Back K (2017) Cadmium disrupts subcellular organelles, including chloroplasts, resulting in melatonin induction in plants. Molecules 22(10):1791

    Article  PubMed Central  Google Scholar 

  • Li C, Tan DX, Liang D, Chang C, Jia D, Ma F (2015) Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. J Exp Bot 66(3):669–680

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Li A, Yu H, Li W, Liang C, Guo S, Chu C (2017) Melatonin regulates root architecture by modulating auxin response in rice. Front Plant Sci 8:134

    Article  PubMed  PubMed Central  Google Scholar 

  • Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry–based metabolite profiling in plants. Nat Protoc 1(1):387–396

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Zhang R, Sun Y, Liu Z, Jin W, Sun Y (2016) The beneficial effects of exogenous melatonin on tomato fruit properties. Sci Hort 207:14–20

    Article  CAS  Google Scholar 

  • Malick CP, Singh MB (1980) Plant enzymology and histo enzymology. Kalyani Publishers, New Delhi, p 286

    Google Scholar 

  • Marta B, Szafrańska K, Posmyk MM (2016) Exogenous melatonin improves antioxidant defense in cucumber seeds (Cucumis sativus L.) germinated under chilling stress. Front Plant Sci 7:575

    Article  PubMed  PubMed Central  Google Scholar 

  • Murch SJ, Saxena PK (2002) Mammalian neurohormones: potential significance in reproductive physiology of St. John’s wort (Hypericum perforatum L.)? Naturwissenschaften 89(12):555–560

    Article  CAS  PubMed  Google Scholar 

  • Nabaei M, Amooaghaie R (2020) Melatonin and nitric oxide enhance cadmium tolerance and phytoremediation efficiency in Catharanthus roseus (L.) G. Don. Environ Sci Pollut Res 27(7):6981–6994

    Article  CAS  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U. S. Dept. Agri. Circular No. 939

  • Orabi SA, Abdelhamid MT (2016) Protective role of α-tocopherol on two Vicia faba cultivars against seawater-induced lipid peroxidation by enhancing capacity of anti-oxidative system. J Saudi Soc Agric Sci 15(2):145–154

    Google Scholar 

  • Pang W, Crow WT, Luc JE, McSorley R, Giblin-Davis RM, Kenworthy KE, Kruse JK (2011) Comparison of water displacement and WinRHIZO software for plant root parameter assessment. Plant Dis 95(10):1308–1310

    Article  CAS  PubMed  Google Scholar 

  • Park S, Back K (2012) Melatonin promotes seminal root elongation and root growth in transgenic rice after germination. J Pineal Res 53(4):385–389

    Article  CAS  PubMed  Google Scholar 

  • Ranganna S (1986) Handbook of analysis and quality control for fruit and vegetable products. Tata McGraw-Hill Education, New York

    Google Scholar 

  • Ren J, Yang X, Zhang N, Feng L, Ma C, Wang Y, Zhao J (2022) Melatonin alleviates aluminum-induced growth inhibition by modulating carbon and nitrogen metabolism, and reestablishing redox homeostasis in Zea mays L. J Hazard Mater 423:127159

    Article  CAS  PubMed  Google Scholar 

  • Rucińska-Sobkowiak R (2016) Water relations in plants subjected to heavy metal stresses. Acta Physiol Plant 38(11):1–13

    Article  Google Scholar 

  • Sami A, Shah FA, Abdullah M, Zhou X, Yan Y, Zhu Z, Zhou K (2020) Melatonin mitigates cadmium and aluminium toxicity through modulation of antioxidant potential in Brassica napus L. Plant Biol 22(4):679–690

    Article  CAS  PubMed  Google Scholar 

  • Saradhi PP, Mohanty P (1997) Involvement of proline in protecting thylakoid membranes against free radical-induced photodamage. J Photochem Photobiol B 38(2–3):253–257

    Google Scholar 

  • Sarker U, Oba S (2018) Drought stress enhances nutritional and bioactive compounds, phenolic acids and antioxidant capacity of Amaranthus leafy vegetable. BMC Plant Biol 18(1):1–15

    Article  Google Scholar 

  • Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    Article  CAS  PubMed  Google Scholar 

  • Shanying HE, Xiaoe YANG, Zhenli HE, Baligar VC (2017) Morphological and physiological responses of plants to cadmium toxicity: a review. Pedosphere 27(3):421–438

    Article  Google Scholar 

  • Shekar CC, Sammaiah D, Rambabu M, Reddy KJ (2011) Effect of cadmium on tomato growth and yield attributes. J Microbiol Biotechnol Res 1(3):109–112

    Google Scholar 

  • Stanford G, English L (1949) Use of the flame photometer in rapid soil tests for K and Ca. Agron J. https://doi.org/10.2134/agronj1949.00021962004100090012x

    Article  Google Scholar 

  • Subbaiah BV (1956) A rapid procedure for estimation of available nitrogen in soil. Curr Sci 25:259–260

    Google Scholar 

  • Sun C, Lv T, Huang L, Liu X, Jin C, Lin X (2020) Melatonin ameliorates aluminum toxicity through enhancing aluminum exclusion and reestablishing redox homeostasis in roots of wheat. J Pineal Res 68(4):e12642

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Zhang N, Wang J, Zhang H, Li D, Shi J, Guo YD (2015) Melatonin promotes ripening and improves quality of tomato fruit during postharvest life. J Exp Bot 66(3):657–668

    Article  CAS  PubMed  Google Scholar 

  • Szafrańska K, Reiter R, Posmyk MM (2016) Melatonin application to Pisum sativum L. seeds positively influences the function of the photosynthetic apparatus in growing seedlings during paraquat-induced oxidative stress. Front Plant Sci 7:1663. https://doi.org/10.3389/fpls.2016.01663

    Article  PubMed  PubMed Central  Google Scholar 

  • Thimmaiah SK (1999) Standard methods of biochemical analysis. Kalayani Publishers, New Delhi

    Google Scholar 

  • Tousi S, Zoufan P, Ghahfarrokhie AR (2020) Alleviation of cadmium-induced phytotoxicity and growth improvement by exogenous melatonin pretreatment in mallow (Malva parviflora) plants. Ecotoxicol Environ Saf 206:111403

    Article  CAS  PubMed  Google Scholar 

  • Umapathi M, Kalarani M, Udhaya Bharathi M, Kalaiselvi P (2018) Cadmium induced stress mitigation in tomato by exogenous melatonin. Int J Pure Appl Biosci 1:903–909

    Article  Google Scholar 

  • Wang Y, Reiter RJ, Chan Z (2018) Phytomelatonin: a universal abiotic stress regulator. J Exp Bot 69(5):963–974

    Article  CAS  PubMed  Google Scholar 

  • Witters N, Mendelsohn RO, Van Slycken S, Weyens N, Schreurs E, Meers E, Vangronsveld J (2012) Phytoremediation, a sustainable remediation technology? Conclusions from a case study. I: energy production and carbon dioxide abatement. Biomass Bioenergy 39:454–469

    Article  CAS  Google Scholar 

  • Wu QS, Zou YN, Abd-Allah EF (2014) Mycorrhizal association and ROS in plants. In: Ahmad P (ed) Oxidative damage to plants. Academic press, Cambridge, pp 453–475

    Chapter  Google Scholar 

  • Xia H, Shen Y, Shen T, Wang X, Zhang X, Hu P, Lv X (2020) Melatonin accumulation in sweet cherry and its influence on fruit quality and antioxidant properties. Molecules 25(3):753

    Article  CAS  PubMed Central  Google Scholar 

  • Xu T, Chen Y, Kang H (2019) Melatonin is a potential target for improving post-harvest preservation of fruits and vegetables. Front Plant Sci. https://doi.org/10.3389/fpls.2019.01388

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu XD (2010) Effects of exogenous melatonin on physiological response of cucumber seedlings under high temperature stress. Master’s degree thesis, Northwest A and F University

  • Yingang LU, Jun MA, Ying TENG, Junyu HE, Christie P, Lingjia ZHU et al (2018) Effect of silicon on growth, physiology, and cadmiumtranslocation of tobacco (Nicotiana tabacum L.) in cadmium-contaminatedsoil. Pedosphere 28(4):680–689

    Article  Google Scholar 

  • Younis U, Malik SA, Rizwan M, Qayyum MF, Ok YS, Shah MHR, Ahmad N (2016) Biochar enhances the cadmium tolerance in spinach (Spinacia oleracea) through modification of Cd uptake and physiological and biochemical attributes. Environ Sci Pollut Res 23(21):21385–21394

    Article  CAS  Google Scholar 

  • Zhang J, Zeng B, Mao Y, Kong X, Wang X, Yang Y, Chen Q (2017) Melatonin alleviates aluminium toxicity through modulating antioxidative enzymes and enhancing organic acid anion exudation in soybean. Funct Plant Biol 44(10):961–968

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Guan J, Liang Q, Zhang X, Hu H, Zhang J (2021) Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings. Sci Rep 11(1):1–11

    Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Umapathi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umapathi, M., Kalarani, M.K., Srinivasan, S. et al. Alleviation of cadmium phytotoxicity through melatonin modulated physiological functions, antioxidants, and metabolites in tomato (Solanum lycopersicum L.). Biometals 35, 1113–1132 (2022). https://doi.org/10.1007/s10534-022-00428-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-022-00428-y

Keywords

Navigation