Skip to main content
Log in

Selenomethionine administration decreases the oxidative stress induced by post mortem ischemia in the heart, liver and kidneys of rats

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Selenium is an essential element in human and animal metabolism integrated into the catalytic site of glutathione peroxidase (GPX1), an antioxidant enzyme that protects cells from damage caused by reactive oxygen species (ROS). Oxidative stress refers the imbalance between ROS and antioxidant defense systems. It generates alterations of DNA, proteins and lipid peroxidation. The imbalance occurs particularly during ischemia and lack of postmortem perfusion. This mechanism is of relevance in transplant organs, affecting their survival. The aim of this research is to evaluate the effect of seleno-methionine (SeMet) as a protective agent against postmortem ischemia injury in transplant organs. Wistar rats were orally administered with SeMet. After sacrifice, liver, heart and kidney samples were collected at different postmortem intervals (PMIs). SeMet administration produced a significant increase of Se concentration in the liver (65%, p < 0.001), heart (40%, p < 0.01) and kidneys (45%, p < 0.05). Levels of the oxidative stress marker malondialdehyde (MDA) decreased significantly compared to control in the heart (0.21 ± 0.04 vs. 0.12 ± 0.02 mmol g−1) and kidneys (0.41 ± 0.02 vs. 0.24 ± 0.03 mmol g−1) in a PMI of 1–12 h (p < 0.01). After SeMet administration for 21 days, a significant increase in GPX1 activity was observed in the liver (80%, p < 0.001), kidneys (74%, p < 0.01) and heart (35%, p < 0.05). SeMet administration to rats significantly decreased the oxidative stress in the heart, liver and kidneys of rats generated by postmortem ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Additional/raw data can be made available upon request.

Abbreviations

SeMet:

Selenomethionine

GPX1:

Glutathione peroxidase 1

SeCys:

Selenocysteine

ROS:

Reactive oxygen species

MDA:

Malondialdehyde

TBA:

2-Thiobarbituric acid

LC:

Liquid chromatography

ICP MS:

Inductively coupled plasma mass spectrometry

PMI:

Postmortem interval

References

  • Akahoshi N et al (2019) Dietary selenium deficiency or selenomethionine excess drastically alters organ selenium contents without altering the expression of most selenoproteins in mice. J Nutr Biochem 69:120–129

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    CAS  PubMed  Google Scholar 

  • Balzan SMP et al (2014) Ischemic versus pharmacologic hepatic preconditioning. J Surg Res 191:134–139

    Article  CAS  PubMed  Google Scholar 

  • Barnes KM, Evenson JK, Raines AM, Sunde RA (2009) Transcript analysis of the selenoproteome indicates that dietary selenium requirements of rats based on selenium-regulated selenoprotein mRNA levels are uniformly less than those based on glutathione peroxidase activity. J Nutr 139:199–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellinger FP, Raman AV, Reeves MA, Berry MJ (2009) Regulation and function of selenoproteins in human disease. Biochem J 422:11–22

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Deagen JT, Butler JA, Beilstein MA, Whanger PD (1985) Effects of dietary selenite, selenocystine and selenomethionine on selenocysteine lyase and glutathione peroxidase activities and on selenium levels in rat tissues. J Nutr 117(1):91–98

    Article  Google Scholar 

  • Faizan M, Esatbeyoglu T, Bayram B, Rimbach G (2014) A fast and validated method for the determination of malondialdehyde in fish liver using high-performance liquid chromatography with a photodiode array detector. J Food Sci 79:C484–C488

    Article  CAS  PubMed  Google Scholar 

  • Ferdinandy P, Hausenloy DJ, Heusch G, Baxter GF, Schulz R (2014) Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev 66:1142–1174

    Article  CAS  PubMed  Google Scholar 

  • Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Methods in enzymology, vol 105. Elsevier, Amsterdam, pp 114–120

    Google Scholar 

  • Handy DE et al (2009) Glutathione peroxidase-1 regulates mitochondrial function to modulate redox-dependent cellular responses. J Biol Chem 284:11913–11921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatfield DL, Schweizer U, Tsuji PA, Gladyshev VN (2016) Selenium: its molecular biology and role in human health, 4th edn. Springer, Cham

    Book  Google Scholar 

  • Huff-Lonergan E, Lonergan SM (2005) Mechanisms of water-holding capacity of meat: the role of postmortem biochemical and structural changes. Meat Sci 71:194–204

    Article  CAS  PubMed  Google Scholar 

  • Kim H-C, Jhoo W-K, Shin E-J, Bing G (2000) Selenium deficiency potentiates methamphetamine-induced nigral neuronal loss; comparison with MPTP model. Brain Res 862:247–252

    Article  CAS  PubMed  Google Scholar 

  • Korchazhkina O, Exley C, Spencer SA (2003) Measurement by reversed-phase high-performance liquid chromatography of malondialdehyde in normal human urine following derivatisation with 2, 4-dinitrophenylhydrazine. J Chromatogr B 794:353–362

    Article  CAS  Google Scholar 

  • Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94:739–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Bellido FG, López LB (2013) Selenium and health; reference values and current status of Spanish population. Nutr Hosp 28:1396–1406

    PubMed  Google Scholar 

  • Marnett LJ (1999) Lipid peroxidation—DNA damage by malondialdehyde. Mutat Res 424:83–95

    Article  CAS  PubMed  Google Scholar 

  • Mateos R, Lecumberri E, Ramos S, Goya L, Bravo L (2005) Determination of malondialdehyde (MDA) by high-performance liquid chromatography in serum and liver as a biomarker for oxidative stress: application to a rat model for hypercholesterolemia and evaluation of the effect of diets rich in phenolic antioxidants from fruits. J Chromatogr B 827:76–82

    Article  CAS  Google Scholar 

  • Mickiewicz B, Villemaire ML, Sandercock LE, Jirik FR, Vogel HJ (2014) Metabolic changes associated with selenium deficiency in mice. Biometals 27:1137–1147

    Article  CAS  PubMed  Google Scholar 

  • Miranda B, Vilardell J, Grinyo J (2003) Optimizing cadaveric organ procurement: the Catalan and Spanish experience. Am J Transplant 3:1189–1196

    Article  CAS  PubMed  Google Scholar 

  • Musik I, Kiełczykowska M, Kocot J (2013) Oxidant balance in brain of rats receiving different compounds of selenium. Biometals 26:763–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papp LV, Lu J, Holmgren A, Khanna KK (2007) From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 9:775–806

    Article  CAS  PubMed  Google Scholar 

  • Reyes L, Bishop DP, Hawkins CL, Rayner BS (2019) Assessing the efficacy of dietary selenomethionine supplementation in the setting of cardiac ischemia/reperfusion injury. Antioxidants. https://doi.org/10.3390/antiox8110546

    Article  PubMed  PubMed Central  Google Scholar 

  • Rider S, Davies S, Jha A, Clough R, Sweetman J (2010) Bioavailability of co-supplemented organic and inorganic zinc and selenium sources in a white fishmeal-based rainbow trout (Oncorhynchus mykiss) diet. J Anim Physiol Anim Nutr 94:99–110

    Article  CAS  Google Scholar 

  • Roman M, Jitarub P, Barbante C (2014) Selenium biochemistry and its role for human health. Metallomics 6:25–54

    Article  CAS  PubMed  Google Scholar 

  • Sakr SAR, Mahran HA-h, Nofal AE, (2011) Effect of selenium on carbimazole-induced testicular damage and oxidative stress in albino rats. J Trace Elem Med Biol 25:59–66

    Article  CAS  PubMed  Google Scholar 

  • Sandre C, Agay D, Ducros V, Van Uye A, Cruz C, Chancerelle Y, Roussel AM (2004) Early evolution of selenium status and oxidative stress parameters in rat models of thermal injury. J Trace Elem Med Biol 17:313–318

    Article  CAS  PubMed  Google Scholar 

  • Schomburg L, Schweizer U (2009) Hierarchical regulation of selenoprotein expression and sex-specific effects of selenium. Biochim Biophys Acta Gen Subj 1790:1453–1462

    Article  CAS  Google Scholar 

  • Shi S, Xue F (2016) Current antioxidant treatments in organ transplantation. Oxid Med Cell Longev. https://doi.org/10.1155/2016/8678510

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith AM, Picciano MF (1987) Relative bioavailability of seleno-compounds in the lactating rat. J Nutr 117:725–731

    Article  CAS  PubMed  Google Scholar 

  • Su L, Wang M, Yin S-T, Wang H-L, Chen L, Sun L-G, Ruan D-Y (2008) The interaction of selenium and mercury in the accumulations and oxidative stress of rat tissues. Ecotoxicol Environ Saf 70:483–489

    Article  CAS  PubMed  Google Scholar 

  • Sunde RA, Raines AM (2011) Selenium regulation of the selenoprotein and nonselenoprotein transcriptomes in rodents. Adv Nutr 2:138–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki Y, Hashiura Y, Matsumura K, Matsukawa T, Shinohara A, Furuta N (2010) Dynamic pathways of selenium metabolism and excretion in mice under different selenium nutritional statuses. Metallomics 2:126–132

    Article  CAS  PubMed  Google Scholar 

  • Townsend DM, Tew KD, Tapiero H (2003) The importance of glutathione in human disease. Biomed Pharmacother 57:145–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tug T, Karatas F, Terzi SM, Ozdemir N (2005) Comparison of serum malondialdehyde levels determined by two different methods in patients with COPD: HPLC or TBARS. Lab Med 36:41–44

    Article  Google Scholar 

  • Vela C, Thomsen M, Delbosc S, Calise D, Cristol J, Mourad G (2007) Lipid and oxidative stress disorders in a rat model of chronic rejection. Transplantation proceedings, vol 8. Elsevier, Amsterdam, pp 2617–2619

    Google Scholar 

  • Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135

    Article  CAS  PubMed  Google Scholar 

  • Yim SH, Clish CB, Gladyshev VN (2019) Selenium deficiency is associated with pro-longevity mechanisms. Cell Rep 27(9):2785–2797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Kalogeris T, Korthuis RJ (2019) Reactive species-induced microvascular dysfunction in ischemia/reperfusion. Free Radic Biol Med 135:182–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support received by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Técnica (ANPCyT) and the Universidad Nacional de San Luis (UNSL).

Funding

This work was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) [1 Grant, Hasuoka], the Agencia Nacional de Promoción Científica y Técnica (ANPCyT) and the Universidad Nacional de San Luis (UNSL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo H. Pacheco.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

All animal experimentation was reviewed and approved by the Animal Care and Use Institutional Committee of the Universidad Nacional de San Luis (Ord. 006-02, Protocol N ° F-293/18 UNSL).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 189 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasuoka, P.E., Iglesias, J.P., Teves, M. et al. Selenomethionine administration decreases the oxidative stress induced by post mortem ischemia in the heart, liver and kidneys of rats. Biometals 34, 831–840 (2021). https://doi.org/10.1007/s10534-021-00310-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-021-00310-3

Keywords

Navigation