Skip to main content
Log in

A structural comparison of human serum transferrin and human lactoferrin

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The transferrins are a family of proteins that bind free iron in the blood and bodily fluids. Serum transferrins function to deliver iron to cells via a receptor-mediated endocytotic process as well as to remove toxic free iron from the blood and to provide an anti-bacterial, low-iron environment. Lactoferrins (found in bodily secretions such as milk) are only known to have an anti-bacterial function, via their ability to tightly bind free iron even at low pH, and have no known transport function. Though these proteins keep the level of free iron low, pathogenic bacteria are able to thrive by obtaining iron from their host via expression of outer membrane proteins that can bind to and remove iron from host proteins, including both serum transferrin and lactoferrin. Furthermore, even though human serum transferrin and lactoferrin are quite similar in sequence and structure, and coordinate iron in the same manner, they differ in their affinities for iron as well as their receptor binding properties: the human transferrin receptor only binds serum transferrin, and two distinct bacterial transport systems are used to capture iron from serum transferrin and lactoferrin. Comparison of the recently solved crystal structure of iron-free human serum transferrin to that of human lactoferrin provides insight into these differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aisen P, Leibman A, Zweier J (1978) Stoichiometric and site characteristics of the binding of iron to human transferrin. J Biol Chem 253:1930–1937

    PubMed  CAS  Google Scholar 

  • Anderson BF, Baker HM, Norris GE, Rice DW, Baker EN (1989) Structure of human lactoferrin: crystallographic structure analysis and refinement at 2.8 Å resolution. J Mol Biol 209:711–734

    Article  PubMed  CAS  Google Scholar 

  • Anderson JE, Sparling PF, Cornelissen CN (1994) Gonococcal transferrin-binding protein 2 facilitates but is not essential for transferrin utilization. J Bacteriol 176:3162–3170

    PubMed  CAS  Google Scholar 

  • Bagos PG, Liakopoulos TD, Spyropoulos IC, Hamodrakas SJ (2004) PRED-TMBB: a web server for predicting the topology of beta-barrel outer membrane proteins. Nucleic Acids Res 32:W400–W404

    Article  PubMed  CAS  Google Scholar 

  • Baker HM, Baker EN (2004) Lactoferrin and iron: structural and dynamic aspects of binding and release. Biometals 17:209–216

    Article  PubMed  CAS  Google Scholar 

  • Beatty EJ, Cox MC, Frenkiel TA et al (1996) Interlobe communication in 13C-methionine-labeled human transferrin. Biochemistry 35:7635–7642

    Article  PubMed  CAS  Google Scholar 

  • Boulton IC, Gorringe AR, Carr RJ et al (1997) Characterisation of the meningococcal transferrin binding protein complex by photon correlation spectroscopy. FEBS Lett 414:409–413

    Article  PubMed  CAS  Google Scholar 

  • Boulton IC, Gorringe AR, Allison N et al (1998) Transferrin-binding protein B isolated from Neisseria meningitidis discriminates between apo and diferric human transferrin. Biochem J 334:269–273

    PubMed  CAS  Google Scholar 

  • Boulton IC, Gorringe AR, Shergill JK, Joannou CL, Evans RW (1999) A dynamic model of the meningococcal transferrin receptor. J Theor Biol 198:497–505

    Article  PubMed  CAS  Google Scholar 

  • Boulton IC, Yost MK, Anderson JE, Cornelissen CN (2000) Identification of discrete domains within gonococcal transferrin-binding protein A that are necessary for ligand binding and iron uptake functions. Infect Immun 68:6988–6996

    Article  PubMed  CAS  Google Scholar 

  • Buchanan SK, Smith BS, Venkatramani L et al (1999) Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nat Struct Biol 6:56–63

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Zak O, Aisen P, Harrison SC, Walz T (2004) Structure of the human transferrin receptor–transferrin complex. Cell 116:565–576

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Zak O, Aisen P, Harrison SC, Walz T (2005) Single particle reconstruction of the human apo-transferrin–transferrin receptor complex. J Struct Biol 152:204–210

    Article  PubMed  CAS  Google Scholar 

  • Chimento DP, Mohanty AK, Kadner RJ, Wiener MC (2003) Substrate-induced transmembrane signaling in the cobalamin transporter BtuB. Nat Struct Biol 10:394–401

    Article  PubMed  CAS  Google Scholar 

  • Cobessi D, Celia H, Folschweiller N et al (2005a) The crystal structure of the pyoverdine outer membrane receptor FpvA from Pseudomonas aeruginosa at 3.6 angstroms resolution. J Mol Biol 347:121–134

    Article  CAS  Google Scholar 

  • Cobessi D, Celia H, Pattus F (2005b) Crystal structure at high resolution of ferric–pyochelin and its membrane receptor FptA from Pseudomonas aeruginosa. J Mol Biol 352:893–904

    Article  CAS  Google Scholar 

  • Cornelissen CN, Biswas GD, Tsai J et al (1992) Gonococcal transferrin-binding protein 1 is required for transferrin utilization and is homologous to TonB-dependent outer membrane receptors. J Bacteriol 174:5788–5797

    PubMed  CAS  Google Scholar 

  • Day CL, Stowell KM, Baker EN, Tweedie JW (1992) Studies of the N-terminal half of human lactoferrin produced from the cloned cDNA demonstrate that interlobe interactions modulate iron release. J Biol Chem 267:13857–13862

    PubMed  CAS  Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos

    Google Scholar 

  • Evans RW, Oakhill JS (2002) Transferrin-mediated iron acquisition by pathogenic Neisseria. Biochem Soc Trans 30:705–707

    Article  PubMed  CAS  Google Scholar 

  • Ferguson AD, Hofmann E, Coulton JW, Diederichs K, Welte W (1998) Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science 282:2215–2220

    Article  PubMed  CAS  Google Scholar 

  • Ferguson AD, Chakraborty R, Smith BS et al (2002) Structural basis of gating by the outer membrane transporter FecA. Science 295:1715–1719

    Article  PubMed  CAS  Google Scholar 

  • Fleming MD, Romano MA, Su MA et al (1998) Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc Natl Acad Sci USA 95:1148–1153

    Article  PubMed  CAS  Google Scholar 

  • Fuller CA, Retzer MD, Jacobs E, Schryvers AB (1996) Evidence for a bilobed structure for meningcoccal transferrin receptor binding protein B. In: Proceedings of the 10th international pathogenic Neisseria conference, Baltimore, pp 72–73

  • Giannetti AM, Snow PM, Zak O, Bjorkman PJ (2003) Mechanism for multiple ligand recognition by the human transferrin receptor. PLoS Biol 1:E51

    Article  PubMed  Google Scholar 

  • Giannetti AM, Halbrooks PJ, Mason AB et al (2005) The molecular mechanism for receptor-stimulated iron release from the plasma iron transport protein transferrin. Structure 13:1613–1623

    Article  PubMed  CAS  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  PubMed  CAS  Google Scholar 

  • Guha Thakurta P, Choudhury D, Dasgupta R, Dattagupta JK (2003) Structure of diferric hen serum transferrin at 2.8 Å resolution. Acta Crystallogr D Biol Crystallogr 59:1773–1781

    Article  PubMed  Google Scholar 

  • Gumerov DR, Mason AB, Kaltashov IA (2003) Interlobe communication in human serum transferrin: metal binding and conformational dynamics investigated by electrospray ionization mass spectrometry. Biochemistry 42:5421–5428

    Article  PubMed  CAS  Google Scholar 

  • Halbrooks PJ, He QY, Briggs SK et al (2003) Investigation of the mechanism of iron release from the C-lobe of human serum transferrin: mutational analysis of the role of a pH sensitive triad. Biochemistry 42:3701–3707

    Article  PubMed  CAS  Google Scholar 

  • Hall DR, Hadden JM, Leonard GA et al (2002) The crystal and molecular structures of diferric porcine and rabbit serum transferrins at resolutions of 2.15 and 2.60 Å, respectively. Acta Crystallogr D Biol Crystallogr 58:70–80

    Article  PubMed  CAS  Google Scholar 

  • Harris DC, Aisen P (1989) Iron carriers and iron proteins. VCH Publishers, New York

    Google Scholar 

  • He QY, Mason AB, Tam BM, MacGillivray RT, Woodworth RC (1999) Dual role of Lys206–Lys296 interaction in human transferrin N-lobe: iron-release trigger and anion-binding site. Biochemistry 38:9704–9711

    Article  PubMed  CAS  Google Scholar 

  • Jameson GB, Anderson BF, Norris GE, Thomas DH, Baker EN (1999) Structure of human apolactoferrin at 2.0 Å resolution. Refinement and analysis of ligand-induced conformational change. Addendum. Acta Crystallogr D Biol Crystallogr 55:1108

    Article  PubMed  Google Scholar 

  • Jeffrey PD, Bewley MC, MacGillivray RT et al (1998) Ligand-induced conformational change in transferrins: crystal structure of the open form of the N-terminal half-molecule of human transferrin. Biochemistry 37:13978–13986

    Article  PubMed  CAS  Google Scholar 

  • Khan JA, Kumar P, Paramasivam M et al (2001) Camel lactoferrin, a transferrin-cum-lactoferrin: crystal structure of camel apolactoferrin at 2.6 Å resolution and structural basis of its dual role. J Mol Biol 309:751–761

    Article  PubMed  CAS  Google Scholar 

  • Krell T, Renauld-Mongenie G, Nicolai MC et al (2003) Insight into the structure and function of the transferrin receptor from Neisseria meningitidis using microcalorimetric techniques. J Biol Chem 278:14712–14722

    Article  PubMed  CAS  Google Scholar 

  • Kumar P, Khan JA, Yadav S, Singh TP (2002) Crystal structure of equine apolactoferrin at 303 K providing further evidence of closed conformations of N and C lobes. Acta Crystallogr D Biol Crystallogr 58:225–232

    Article  PubMed  CAS  Google Scholar 

  • Kurisu G, Zakharov SD, Zhalnina MV et al (2003) The structure of BtuB with bound colicin E3 R-domain implies a translocon. Nat Struct Biol 10:948–954

    Article  PubMed  CAS  Google Scholar 

  • Kurokawa H, Mikami B, Hirose M (1994) Crucial role of intralobe peptide–peptide interactions in the uptake and release of iron by ovotransferrin. J Biol Chem 269:6671–6676

    PubMed  CAS  Google Scholar 

  • Kurokawa H, Mikami B, Hirose M (1995) Crystal structure of diferric hen ovotransferrin at 2.4 Å resolution. J Mol Biol 254:196–207

    Article  PubMed  CAS  Google Scholar 

  • Kurokawa H, Dewan JC, Mikami B, Sacchettini JC, Hirose M (1999) Crystal structure of hen apo-ovotransferrin. Both lobes adopt an open conformation upon loss of iron. J Biol Chem 274:28445–28452

    CAS  Google Scholar 

  • Lawrence CM, Ray S, Babyonyshev M et al (1999) Crystal structure of the ectodomain of human transferrin receptor. Science 286:779–782

    Article  PubMed  CAS  Google Scholar 

  • Lin LN, Mason AB, Woodworth RC, Brandts JF (1991) Calorimetric studies of the binding of ferric ions to ovotransferrin and interactions between binding sites. Biochemistry 30:11660–11669

    Article  PubMed  CAS  Google Scholar 

  • Lin LN, Mason AB, Woodworth RC, Brandts JF (1994) Calorimetric studies of serum transferrin and ovotransferrin. Estimates of domain interactions, and study of the kinetic complexities of ferric ion binding. Biochemistry 33:1881–1888

    Article  PubMed  CAS  Google Scholar 

  • Liu R, Guan JQ, Zak O, Aisen P, Chance MR (2003) Structural reorganization of the transferrin C-lobe and transferrin receptor upon complex formation: the C-lobe binds to the receptor helical domain. Biochemistry 42:12447–12454

    Article  PubMed  CAS  Google Scholar 

  • Locher KP, Rees B, Koebnik R et al (1998) Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell 95:771–778

    Article  PubMed  CAS  Google Scholar 

  • MacGillivray RT, Moore SA, Chen J et al (1998) Two high-resolution crystal structures of the recombinant N-lobe of human transferrin reveal a structural change implicated in iron release. Biochemistry 37:7919–7928

    Article  PubMed  CAS  Google Scholar 

  • Mazurier J, Spik G (1980) Comparative study of the iron-binding properties of human transferrins. I. Complete and sequential iron saturation and desaturation of the lactotransferrin. Biochim Biophys Acta 629:399–408

    PubMed  CAS  Google Scholar 

  • Moore SA, Anderson BF, Groom CR, Haridas M, Baker EN (1997) Three-dimensional structure of diferric bovine lactoferrin at 2.8 Å resolution. J Mol Biol 274:222–236

    Article  PubMed  CAS  Google Scholar 

  • Nurizzo D, Baker HM, He QY et al (2001) Crystal structures and iron release properties of mutants (K206A and K296A) that abolish the dilysine interaction in the N-lobe of human transferrin. Biochemistry 40:1616–1623

    Article  PubMed  CAS  Google Scholar 

  • Oakhill JS, Sutton BJ, Gorringe AR, Evans RW (2005) Homology modelling of transferrin-binding protein A from Neisseria meningitidis. Protein Eng Des Sel 18:221–228

    Article  PubMed  CAS  Google Scholar 

  • Okamoto I, Mizutani K, Hirose M (2004) Iron-binding process in the amino- and carboxyl-terminal lobes of ovotransferrin: quantitative studies utilizing single Fe3(-binding mutants. Biochemistry 43:11118–11125

    Article  PubMed  CAS  Google Scholar 

  • Pawelek PD, Croteau N, Ng-Thow-Hing C et al (2006) Structure of TonB in complex with FhuA, E. coli outer membrane receptor. Science 312:1339–1402

    Article  CAS  Google Scholar 

  • Peterson NA, Arcus VL, Anderson BF et al (2002) “Dilysine trigger” in transferrins probed by mutagenesis of lactoferrin: crystal structures of the R210G, R210E, and R210L mutants of human lactoferrin. Biochemistry 41:14167–14175

    Article  PubMed  CAS  Google Scholar 

  • Rawas A, Muirhead H, Williams J (1996) Structure of diferric duck ovotransferrin at 2.35 Å resolution. Acta Crystallogr D Biol Crystallogr 52:631–640

    Article  PubMed  CAS  Google Scholar 

  • Rawas A, Muirhead H, Williams J (1997) Structure of apo duck ovotransferrin: the structures of the N and C lobes are in the open form. Acta Crystallogr D Biol Crystallogr 53:464–468

    Article  PubMed  CAS  Google Scholar 

  • Renauld-Mongenie G, Latour M, Poncet D, Naville S, Quentin-Millet MJ (1998) Both the full-length and the N-terminal domain of the meningococcal transferrin-binding protein B discriminate between human iron-loaded and apo-transferrin. FEMS Microbiol Lett 169:171–177

    Article  PubMed  CAS  Google Scholar 

  • Retzer MD, Yu R, Zhang Y, Gonzalez GC, Schryvers AB (1998) Discrimination between apo and iron-loaded forms of transferrin by transferrin binding protein B and its N-terminal subfragment. Microb Pathog 25:175–180

    Article  PubMed  CAS  Google Scholar 

  • Rohde KH, Dyer DW (2003) Mechanisms of iron acquisition by the human pathogens Neisseria meningitidis and Neisseria gonorrhoeae. Front Biosci 8:d1186–d1218

    Article  PubMed  CAS  Google Scholar 

  • Shultis DD, Purdy MD, Banchs CN, Wiener MC (2006) Outer membrane active transport: structure of the BtuB:TonB complex. Science 312:1396–1399

    Article  PubMed  CAS  Google Scholar 

  • Teh M, Hewitt J, Ung KC et al (2005) Identification of the epitope of a monoclonal antibody that disrupts binding of human transferrin to the human transferrin receptor. FEBS J 272:6344–6353

    Article  PubMed  CAS  Google Scholar 

  • Tettelin H, Saunders NJ, Heidelberg J et al (2000) Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287:1809–1815

    Article  PubMed  CAS  Google Scholar 

  • Thakurta PG, Choudhury D, Dasgupta R, Dattagupta JK (2004) Tertiary structural changes associated with iron binding and release in hen serum transferrin: a crystallographic and spectroscopic study. Biochem Biophys Res Commun 316:1124–1131

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Wally J, Halbrooks PJ, Vonrhein C et al (2006) The crystal structure of iron-free human serum transferrin provides insight into inter-lobe communication and receptor binding. J Biol Chem 281:24934–24944

    Article  PubMed  CAS  Google Scholar 

  • Wandersman C, Delepelaire P (2004) Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647

    Article  PubMed  CAS  Google Scholar 

  • Ward PP, Zhou X, Conneely OM (1996) Cooperative interactions between the amino- and carboxyl-terminal lobes contribute to the unique iron-binding stability of lactoferrin. J Biol Chem 271:12790–12794

    Article  PubMed  CAS  Google Scholar 

  • Wiener M (2005) TonB-dependent outer membrane transport: going for Baroque? Curr Opin Struct Biol 15:394–400

    Article  PubMed  CAS  Google Scholar 

  • Woodbury RG, Brown JP, Yeh MY, Hellstrom I, Hellstrom KE (1980) Identification of a cell surface protein, p97, in human melanomas and certain other neoplasms. Proc Natl Acad Sci USA 77:2183–2187

    Article  PubMed  CAS  Google Scholar 

  • Xu G, Liu R, Zak O, Aisen P, Chance MR (2005) Structural allostery and binding of the transferrin × receptor complex. Mol Cell Proteomics 4:1959–1967

    Article  PubMed  CAS  Google Scholar 

  • Yue WW, Grizot S, Buchanan SK (2003) Structural evidence for iron-free citrate and ferric citrate binding to the TonB-dependent outer membrane transporter FecA. J Mol Biol 332:353–368

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Tim Fritz (NIDDK/NIH) for critically reading the manuscript. This work is supported by the Intramural Research Program of the NIH, National Institute of Diabetes and Digestive and Kidney Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan K. Buchanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wally, J., Buchanan, S.K. A structural comparison of human serum transferrin and human lactoferrin. Biometals 20, 249–262 (2007). https://doi.org/10.1007/s10534-006-9062-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-006-9062-7

Keywords

Navigation