Skip to main content

Advertisement

Log in

Small differences in ombrotrophy control regional-scale variation in methane cycling among Sphagnum-dominated peatlands

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Although methane (CH4) dynamics are known to differ at broad scales among peatland types and with climate, there is limited understanding of the variability associated with anaerobic carbon (C) cycling, and, the mechanisms that control that variability, among low pH, Sphagnum moss-dominated peatlands within a geographical region with similar climate. This is important because upscaling of CH4 emissions to regional and global scales often considers peatlands as a single, or at most two, ecosystem type(s). Here, we report the results from two studies exploring the controls of CH4 cycling in peatlands from the Upper Midwest (USA). Potential CH4 production and resultant CO2:CH4 ratios varied by several orders-of-magnitude among these soils. These differences were only partially explained by pH and fiber content (a measure of degree of decomposition in peat), suggesting other, more complicated controls may drive CH4 cycling in ombrotrophic peat soils. Based in part on the results from this survey, we more intensively examined CH4 dynamics in three bog-like, acidic, Sphagnum-dominated peatlands in northern Minnesota that differed in their degree of ombrotrophy. Net CH4 flux was lowest in the peatland with well-developed hummocks, and the isotopic composition of the CH4 along with methanotroph gene expression indicated a strong role for CH4 oxidation in controlling net CH4 flux. There were limited differences in porewater chemistry (CH4 and dissolved inorganic C concentrations) or microbial community composition among sites, and potential CH4 production was also similar among the sites. Taken together, these experiments demonstrate that high variation in CH4 cycling in seemingly similar peatlands within a single geographical region is common. We suggest a one peatland represents all approach is inappropriate—even among Sphagnum-dominated peatlands—and caution must be used when extrapolating data from a single site to the landscape scale, even for outwardly very similar peatlands. Instead, the macroscale development of peatlands, and concomitantly their microtopography as expressed in the proportion of hummocks, hollows, lawns and pools, need to be considered as central controls over CH4 emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aaseng N, Almendinger J, Dana R, Hanson D, Lee M, Rowe E, Rusterholz K, Wovcha D (2011) Minnesota’s native plant community classification: A statewide classification of terrestrial and wetland vegetation based on numerical analysis of plot data. In: Biological Report. No. 108

  • Belyea LR, Baird AJ (2006) Beyond “the limits to peat bog growth”: cross-scale feedback in peatland development. Ecol Monogr 76(3):299–322

    Article  Google Scholar 

  • Bragazza L, Parisod J, Buttler A, Bardgett RD (2013) Biogeochemical plant-soil microbe feedback in response to climate warming in peatlands. Nat Clim Chang 3(3):273–277

    Article  Google Scholar 

  • Bridgham SD, Ye R (2013) Organic matter mineralization and decomposition. In: DeLaune RD, Reddy KR, Richardson CJ, Megonigal P (eds) Methods in biogeochemistry of wetlands, pp 253–274

  • Bridgham SD, Pastor J, Janssens JA, Chapin C, Malterer TJ (1996) Multiple limiting gradients in peatlands: a call for a new paradigm. Wetlands 16(1):45–65

    Article  Google Scholar 

  • Bridgham SD, Updegraff K, Pastor J (1998) Carbon, nitrogen, and phosphorus mineralization in northern wetlands. Ecology 79(5):1545–1561

    Article  Google Scholar 

  • Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of North American wetlands. Wetlands 26(4):889–916

    Article  Google Scholar 

  • Bridgham SD, Pastor J, Dewey B, Weltzin JF, Updegraff K (2008) Rapid carbon response of peatlands to climate change. Ecology 89(11):3041–3048

    Article  Google Scholar 

  • Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Change Biol 19(5):1325–1346

    Article  Google Scholar 

  • Bubier J, Costello A, Moore T, Roulet N, Savage K (1993) Microtopography and methane flux in boreal peatlands, northern Ontario, Canada. Can J Bot 71(8):1056–1063

    Article  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Tumbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    Article  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6(8):1621–1624

    Article  Google Scholar 

  • Chanton JP, Bauer JE, Glaser PA, Siegel DI, Kelley CA, Tyler SC, Romanowicz EH, Lazrus A (1995) Radiocarbon evidence for the substrates supporting methane formation within northern Minnesota peatlands. Geochim Cosmochim Acta 59(17):3663–3668

    Article  Google Scholar 

  • Chapin CT, Bridgham SD, Pastor J (2004) pH and nutrient effects on above-ground net primary production in a Minnesota, USA bog and fen. Wetlands 24(1):186–201

    Article  Google Scholar 

  • Chasar L, Chanton J, Glaser P, Siegel D (2000) Methane concentration and stable isotope distribution as evidence of rhizospheric processes: comparison of a fen and bog in the Glacial Lake Agassiz Peatland complex. Ann Bot 86(3):655–663

    Article  Google Scholar 

  • Clymo R (1983) Peat. Elsevier, New York

    Google Scholar 

  • Conrad R (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol 28(3):193–202

    Article  Google Scholar 

  • Corbett JE, Tfaily MM, Burdige DJ, Cooper WT, Glaser PH, Chanton JP (2013) Partitioning pathways of CO2 production in peatlands with stable carbon isotopes. Biogeochemistry 114(1–3):327–340

    Article  Google Scholar 

  • Crum H, Planisek S (1992) A focus on peatlands and peat mosses. University of Michigan Press, Ann Arbor

    Book  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072

    Article  Google Scholar 

  • Dunfield P, Dumont R, Moore TR (1993) Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil Biol Biochem 25(3):321–326

    Article  Google Scholar 

  • Edwards C, Hales B, Hall G, McDonald I, Murrell J, Pickup R, Ritchie D, Saunders J, Simon B, Upton M (1998) Microbiological processes in the terrestrial carbon cycle: methane cycling in peat. Atmos Environ 32(19):3247–3255

    Article  Google Scholar 

  • Esson KC, Lin X, Kumaresan D, Chanton JP, Murrell JC, Kostka JE (2016) Alpha-and gammaproteobacterial methanotrophs codominate the active methane-oxidizing communities in an acidic boreal peat bog. Appl Environ Microbiol 82(8):2363–2371

    Article  Google Scholar 

  • Fernández MA, Garcia M, Saenz M (1996) Antibacterial activity of the phenolic acids fractions of Scrophularia frutescens and Scrophularia sambucifolia. J Ethnopharmacol 53(1):11–14

    Article  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103(3):626–631

    Article  Google Scholar 

  • Freeman C, Ostle N, Kang H (2001) An enzymic ‘latch’ on a global carbon store. Nature 409(6817):149–149

    Article  Google Scholar 

  • Freitag TE, Toet S, Ineson P, Prosser JI (2010) Links between methane flux and transcriptional activities of methanogens and methane oxidizers in a blanket peat bog. FEMS Microbiol Ecol 73(1):157–165

    Google Scholar 

  • Frenzel P, Karofeld E (2000) CH4 emission from a hollow-ridge complex in a raised bog: the role of CH4 production and oxidation. Biogeochemistry 51(1):91–112

    Article  Google Scholar 

  • Gilbert JA, Meyer F, Antonopoulos D, Balaji P, Brown CT, Brown CT, Desai N, Eisen JA, Evers D, Field D (2010) Meeting report: the terabase metagenomics workshop and the vision of an Earth microbiome project. Stand Genomic Sci 3(3):243

    Article  Google Scholar 

  • Glaser PH (1987) The ecology of patterened boreal peatlands of northern minnesota: a community profile. Minnesota University Minneapolis Limnology Research Center

  • Glaser PH (1992) Vegetation and water chemistry. In: Wright HE, Coffin BA, Aaseng NE (eds) The patterned peatlands of Minnesota. University of Minnesota Press, Minneapolis, MN, USA, pp 15–26

    Google Scholar 

  • Glaser PH, Janssens JA (1986) Raised bogs in eastern North America: transitions in landforms and gross stratigraphy. Can J Bot 64(2):395–415

    Article  Google Scholar 

  • Glaser PH, Wheeler GA, Gorham E, Wright HE Jr (1981) The patterned mires of the Red Lake peatland, northern Minnesota: vegetation, water chemistry and landforms. J Ecol 69(2):575–599

    Article  Google Scholar 

  • Glaser PH, Siegel DI, Chanton JP, Reeve AS, Rosenberry DO, Corbett JE, Dasgupta S, Levy Z (2016) Climatic drivers for multidecadal shifts in solute transport and methane production zones within a large peat basin. Global Biogeochem Cycles 30(11):1578–1598

    Article  Google Scholar 

  • Griffiths NA, Sebestyen SD (2016) Dynamic vertical profiles of peat porewater chemistry in a northern peatland. Wetlands 36(6):1119–1130

    Article  Google Scholar 

  • Hall E, Bernhardt E, Bier R, Bradford M, Boot C, Cotner J, del Giorgio P, Evans S, Graham E, Jones S (2018) Understanding How Microbiomes Influence the Systems they Inhabit: moving from a correlative to a causal research framework. https://doi.org/10.1101/065128

  • Hanson P, Gill A, Xu X, Phillips J, Weston D, Kolka R, Riggs J, Hook L (2016) Intermediate-scale community-level flux of CO2 and CH4 in a Minnesota peatland: putting the SPRUCE project in a global context. Biogeochemistry 129(3):255–272

    Article  Google Scholar 

  • Iversen CM, Childs J, Norby RJ, Ontl TA, Kolka RK, Brice DJ, McFarlane KJ, Hanson PJ (2017) Fine-root growth in a forested bog is seasonally dynamic, but shallowly distributed in nutrient-poor peat. Plant Soil 1–21

  • Jabłoński S, Rodowicz P, Łukaszewicz M (2015) Methanogenic archaea database containing physiological and biochemical characteristics. Int J Syst Evol Microbiol 65(4):1360–1368

    Article  Google Scholar 

  • Juottonen H, Kotiaho M, Robinson D, Merilä P, Fritze H, Tuittila E-S (2015) Microform-related community patterns of methane-cycling microbes in boreal Sphagnum bogs are site specific. FEMS Microbiol Ecol 91(9): fiv094

  • Keller JK, Medvedeff CA (2016) Soil Organic Matter. In: Vepraskas MJ, Craft CB (eds) Wetland soils: genesis, hydrology, landscapes, and classification, 2nd edn. CRC Press, Boca Raton, pp 165–188

    Google Scholar 

  • Keller JK, Takagi KK (2013) Solid-phase organic matter reduction regulates anaerobic decomposition in bog soil. Ecosphere 4(5):1–12

    Article  Google Scholar 

  • Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L (2013) Three decades of global methane sources and sinks. Nat Geosci 6(10):813–823

    Article  Google Scholar 

  • Kolb S, Knief C, Stubner S, Conrad R (2003) Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl Environ Microbiol 69(5):2423–2429

    Article  Google Scholar 

  • Kolka R, Sebestyen S, Verry ES, Brooks K (2011) Peatland biogeochemistry and watershed hydrology at the Marcell Experimental Forest. CRC Press, Boca Raton

    Google Scholar 

  • Kolka R, Bridgham SD, Ping C-L (2016) Soils of peatlands: histosols and gelisols. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  • Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the Deepwater Horizon oil spill. Appl Environ Microbiol 77(22):7962–7974

    Article  Google Scholar 

  • Kotsyurbenko OR, Chin KJ, Glagolev MV, Stubner S, Simankova MV, Nozhevnikova AN, Conrad R (2004) Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog. Environ Microbiol 6(11):1159–1173

    Article  Google Scholar 

  • Lin X, Green S, Tfaily M, Prakash O, Konstantinidis K, Corbett J, Chanton J, Cooper W, Kostka J (2012) Microbial community structure and activity linked to contrasting biogeochemical gradients in bog and fen environments of the Glacial Lake Agassiz Peatland. Appl Environ Microbiol 78(19):7023–7031

    Article  Google Scholar 

  • Lin X, Tfaily MM, Green SJ, Steinweg JM, Chanton P, Imvittaya A, Chanton JP, Cooper W, Schadt C, Kostka JE (2014a) Microbial metabolic potential for carbon degradation and nutrient (nitrogen and phosphorus) acquisition in an ombrotrophic peatland. Appl Environ Microbiol 80(11):3531–3540

    Article  Google Scholar 

  • Lin X, Tfaily MM, Steinweg JM, Chanton P, Esson K, Yang ZK, Chanton JP, Cooper W, Schadt CW, Kostka JE (2014b) Microbial community stratification linked to utilization of carbohydrates and phosphorus limitation in a boreal peatland at Marcell Experimental Forest, Minnesota, USA. Appl Environ Microbiol 80(11):3518–3530

    Article  Google Scholar 

  • Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71(12):8228–8235

    Article  Google Scholar 

  • Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011) UniFrac: an effective distance metric for microbial community comparison. ISME J 5(2):169

    Article  Google Scholar 

  • Ma S, Jiang J, Huang Y, Shi Z, Wilson RM, Ricciuto D, Sebestyen SD, Hanson PJ, Luo Y (2017) Data-constrained projections of methane fluxes in a Northern Minnesota Peatland in response to elevated CO2 and warming. J Geophys Res 122(11):2841–2861

    Article  Google Scholar 

  • McCalley CK, Woodcroft BJ, Hodgkins SB, Wehr RA, Kim E-H, Mondav R, Crill PM, Chanton JP, Rich VI, Tyson GW (2014) Methane dynamics regulated by microbial community response to permafrost thaw. Nature 514(7523):478–481

    Article  Google Scholar 

  • Medvedeff CA, Bridgham SD, Pfeifer-Meister L, Keller JK (2015) Can Sphagnum leachate chemistry explain differences in anaerobic decomposition in peatlands? Soil Biol Biochem 86:34–41

    Article  Google Scholar 

  • Mellegård H, Stalheim T, Hormazabal V, Granum PE, Hardy SP (2009) Antibacterial activity of sphagnum acid and other phenolic compounds found in Sphagnum papillosum against food-borne bacteria. Lett Appl Microbiol 49(1):85–90

    Article  Google Scholar 

  • Melton J, Wania R, Hodson E, Poulter B, Ringeval B, Spahni R, Bohn T, Avis C, Beerling D, Chen G (2013) Present state of global wetland extent and wetland methane modelling: conclusions from a model intercomparison project (WETCHIMP). Biogeosciences 10:753–788

    Article  Google Scholar 

  • Moore T, Basiliko N (2006) Decomposition in boreal peatlands. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Springer, Berlin, pp 125–143

    Chapter  Google Scholar 

  • Moore P, Bellamy D (1974) Peatlands. Elek Science, New York

    Book  Google Scholar 

  • Moore T, Dalva M (1993) The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils. J Soil Sci 44(4):651–664

    Article  Google Scholar 

  • Moore TR, De Young A, Bubier JL, Humphreys ER, Lafleur PM, Roulet NT (2011) A multi-year record of methane flux at the Mer Bleue Bog, Southern Canada. Ecosystems 14(4):646

    Article  Google Scholar 

  • Neubauer SC, Megonigal JP (2015) Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18(6):1000–1013

    Article  Google Scholar 

  • Olson D, Griffis T, Noormets A, Kolka R, Chen J (2013) Interannual, seasonal, and retrospective analysis of the methane and carbon dioxide budgets of a temperate peatland. J Geophys Res 118(1):226–238

    Article  Google Scholar 

  • Parent L, Caron J (1993) Physical properties of organic soils. In: Carter M (ed) Soil sampling and methods of analysis. CRC Press, Boca Raton, pp 441–458

    Google Scholar 

  • Paulson JN, Stine OC, Bravo HC, Pop M (2013) Differential abundance analysis for microbial marker-gene surveys. Nat Methods 10(12):1200–1202

    Article  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    Article  Google Scholar 

  • Seedorf H, Kittelmann S, Henderson G, Janssen PH (2014) RIM-DB: a taxonomic framework for community structure analysis of methanogenic archaea from the rumen and other intestinal environments. PeerJ 2:e494

    Article  Google Scholar 

  • Segers R (1998) Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41(1):23–51

    Article  Google Scholar 

  • Shannon RD, White JR (1996) The effects of spatial and temporal variations in acetate and sulfate on methane cycling in two Michigan peatlands. Limnol Oceanogr 41(3):435–443

    Article  Google Scholar 

  • Stalheim T, Ballance S, Christensen BE, Granum P (2009) Sphagnan–a pectin-like polymer isolated from Sphagnum moss can inhibit the growth of some typical food spoilage and food poisoning bacteria by lowering the pH. J Appl Microbiol 106(3):967–976

    Article  Google Scholar 

  • Steinberg LM, Regan JM (2008) Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Appl Environ Microbiol 74(21):6663–6671

    Article  Google Scholar 

  • Stocker T, Qin D, Plattner G, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex B, Midgley B (2013) IPCC, 2013: climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Tfaily MM, Cooper WT, Kostka JE, Chanton PR, Schadt CW, Hanson PJ, Iversen CM, Chanton JP (2014) Organic matter transformation in the peat column at Marcell Experimental Forest: humification and vertical stratification. J Geophys Res 119(4):661–675

    Article  Google Scholar 

  • Turetsky MR, Crow SE, Evans RJ, Vitt DH, Wieder RK (2008) Trade-offs in resource allocation among moss species control decomposition in boreal peatlands. J Ecol 96(6):1297–1305

    Article  Google Scholar 

  • Turetsky MR, Kotowska A, Bubier J, Dise NB, Crill P, Hornibrook ER, Minkkinen K, Moore TR, Myers-Smith IH, Nykänen H (2014) A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Glob Change Biol 20(7):2183–2197

    Article  Google Scholar 

  • Updegraff K, Bridgham SD, Pastor J, Weishampel P, Harth C (2001) Response of CO2 and CH4 emissions from peatlands to warming and water table manipulation. Ecol Appl 11(2):311–326

    Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267

    Article  Google Scholar 

  • Wang H, Richardson CJ, Ho M (2015) Dual controls on carbon loss during drought in peatlands. Nat Clim Change 5(6):584–587

    Article  Google Scholar 

  • Wang S, Zhuang Q, Yu Z, Bridgham S, Keller JK (2016) Quantifying peat carbon accumulation in Alaska using a process-based biogeochemistry model. J Geophys Res 121(8):2172–2185

    Article  Google Scholar 

  • Whiticar MJ, Faber E, Schoell M (1986) Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation—isotope evidence. Geochim Cosmochim Acta 50(5):693–709

    Article  Google Scholar 

  • Wilson R, Hopple A, Tfaily M, Sebestyen S, Schadt C, Pfeifer-Meister L, Medvedeff C, McFarlane K, Kostka J, Kolton M (2016) Stability of peatland carbon to rising temperatures. Nat Commun 7:13723

    Article  Google Scholar 

  • Witze A (2015) Minnesota bog study turns up the heat on peat. Nature 524(7566):397–397

    Article  Google Scholar 

  • Yavitt JB, Seidman-Zager M (2006) Methanogenic conditions in northern peat soils. Geomicrobiol J 23(2):119–127

    Article  Google Scholar 

  • Ye R, Jin Q, Bohannan B, Keller JK, McAllister SA, Bridgham SD (2012) pH controls over anaerobic carbon mineralization, the efficiency of methane production, and methanogenic pathways in peatlands across an ombrotrophic–minerotrophic gradient. Soil Biol Biochem 54:36–47

    Article  Google Scholar 

  • Ye R, Jin Q, Bohannan B, Keller JK, Bridgham SD (2014) Homoacetogenesis: a potentially underappreciated carbon pathway in peatlands. Soil Biol Biochem 68:385–391

    Article  Google Scholar 

  • Ye R, Keller JK, Jin Q, Bohannan BJ, Bridgham SD (2016) Peatland types influence the inhibitory effects of a humic substance analog on methane production. Geoderma 265:131–140

    Article  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the U.S. Department of Energy Office of Science, Office of Biological and Environmental Research under award numbers DE-SC0008092, DE-SC0014416, DE-SC0007144, DE-SC0012288 and DE-SC0012088, the Department of Energy Office of Science Graduate Fellowship Program (DE-AC05-06OR23100) and by the National Science Foundation under award number DEB-0816575. Data from this manuscript are available from the SPRUCE Data Archive (Zalman et al. 2018; https://doi.org/10.25581/spruce.043/1434643). We would like to thank P. Hanson, R. Kolka, D. Kyllander, D. Olson, R. Nettles IV, and the rest of the SPRUCE and Marcell Experimental Forest team. We thank Cameron Stewart for help with the pilot survey. Access to Zim Bog was provided by St. Louis County, MN and other Michigan sites by the University of Notre Dame Environmental Research Center. Laboratory and field assistance provided by V. Brown (Chapman University), A. Jong (CU), J. Mosolf (CU), L. Klüpfel (University of Oregon), J. McKenty (UO), P. Chanton (Georgia Institute of Technology), and K. Esson (GT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Zalman.

Additional information

Responsible Editor: Charles T. Driscoll

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zalman, C., Keller, J.K., Tfaily, M. et al. Small differences in ombrotrophy control regional-scale variation in methane cycling among Sphagnum-dominated peatlands. Biogeochemistry 139, 155–177 (2018). https://doi.org/10.1007/s10533-018-0460-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-018-0460-z

Keywords

Navigation