Skip to main content

Advertisement

Log in

Stable calcium isotope speciation and calcium oxalate production within beech tree (Fagus sylvatica L.) organs

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

In this study, we linked Ca speciation with isotope composition in plants. To do this, we performed leachate experiments to access the soluble Ca, structurally bound Ca and insoluble Ca (i.e., water and weak acid resistant) within beech tree organs (Fagus sylvatica L.). Ca isotopic measurements were combined with infrared spectroscopy and calcium oxalate biomineralization identification. The results from our study indicate that bark and leaves are the most enriched in monohydrated calcium oxalate crystals (whewellite), which are observable in parenchyma and sclerenchyma tissues, whereas roots and wood are enriched in structurally bound Ca. Our leaching experiments also show decreasing δ44/40Ca isotopic signatures in the order of soluble Ca > structurally bound Ca > insoluble Ca. This finding implies that because leaves degrade faster than wooden organs and because Ca linked to pectate decomposes faster than Ca linked to oxalate crystals, differential Ca isotopic signatures are expected to be observed during litter degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Åberg G, Jacks G, Hamilton PJ (1989) Weathering rates and 87Sr/86Sr ratios: an isotopic approach. J Hydrol 109:65–78

    Google Scholar 

  • Addadi L, Weiner S (1985) Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc Natl Acad Sci USA 82:4110–4114

    Google Scholar 

  • Amtmann A, Blatt MR (2009) Regulation of macronutrient transport. New Phytol 181:35–52

    Google Scholar 

  • Arvieu JC, Leprince F, Plassard C (2003) Release of oxalate and protons by ectomycorrhizal fungi in response to P-deficiency and calcium carbonate in nutrient solution. Ann For Sci 60:815–821

    Google Scholar 

  • Aubert D, Stille D, Probst A (2001) REE fractionation during granite weathering and removal by waters and suspended load: Sr and Nd isotopic evidence. Geochim Cosmochim Acta 65:387–406

    Google Scholar 

  • Bagard ML, Schmitt AD, Chabaux F et al (2013) Biogeochemistry of stable Ca and radiogenic Sr isotopes in a larch-covered permafrost-dominated watershed of Central Siberia. Geochim Cosmochim Acta 114:169–187

    Google Scholar 

  • Bailey SW, Hornbeck JW, Driscoll CT et al (1996) Calcium inputs and transport in a base-poor forest ecosystem as interpreted by Sr isotopes. Water Resour Res 32:707–719

    Google Scholar 

  • Bailey SM, Buso DC, Likens GE (2003) Implications of sodium mass balance for interpreting the calcium cycle of a forested ecosystem. Ecology 84:471–484

    Google Scholar 

  • Bangerth F (1979) Calcium related physiological disorders of plants. Ann Rev Phytopathol 17:97–122

    Google Scholar 

  • Baran EJ, Rolleri CH (2009) IR-spectroscopic characterization of biominerals in the marattiaceaeus ferns. Rev Bras Bot 33:519–523

    Google Scholar 

  • Baran EJ, Rolleri CH (2010) IR-spectroscopic characterization of biominerals in marattiaceaus ferns. Rev Bras Bot 33:519–523

    Google Scholar 

  • Baran EJ, Gonzales-Baro AC, Ciciarelli MM et al (2010) Characterization of biominerals in species of Canna (Cannaceae). Rev Biol Trop (Int J Trop Biol) 58:1507–1515

    Google Scholar 

  • Bauer P, Elbaumb R, Weissc I (2011) Calcium and silicon mineralization in land plants: transport, structure and function. Plant Sci 180:746–756

    Google Scholar 

  • Bedel L, Poszwa A, Van Der Heijden G et al (2016) Unexpected calcium sources in deep soil layers in low-fertility forest soils identified by strontium isotopes (Lorraine plateau, eastern France). Geoderma 264:103–116

    Google Scholar 

  • Bélanger N, Holmden C, Courchesne F et al (2012) Constraining soil mineral weathering 87Sr/86Sr for calcium apportionment studies of a deciduous forest growing on soils developed from granitoid igneous rocks. Geoderma 185:84–96

    Google Scholar 

  • Belliveau J, Griffin H (2001) The solubility of calcium oxalate in tissue culture media. Anal Biochem 291:69–73

    Google Scholar 

  • Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. For Ecol Manag 133:12–22

    Google Scholar 

  • Berg B, Ekbohm G (1991) Litter mass-loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a Scots pine forest. Can J Bot 69:1449–1456

    Google Scholar 

  • Blum JD, Klaue A, Nezat CA et al (2002) Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems. Nature 417:729–731

    Google Scholar 

  • Borchert R (1984) Functional anatomy of the calcium excreting system of Gleditsia triacanthos L. Bot Gaz 145:474–482

    Google Scholar 

  • Borer CH, Schaberg PG, DeHaynes DH et al (2004) Accretion, partitioning and sequestration of calcium and aluminium in red spruce foliage: implications for tree health. Tree Phys 24:929–939

    Google Scholar 

  • Borrelli NL, Osterrieth M, Oyarbide F et al (2009) Calcium biominerals in typical Argiudolls from the Pampean Plain, Argentina: an approach to the understanding of their role within the calcium biogeochemical cycle. Quat Int 193:61–69

    Google Scholar 

  • Bouropoulos N, Weiner S, Addadi L (2001) Calcium oxalate crystals in tomato and tobacco plants: morphology and in vitro interactions of cristal associated macromolecules. Chemistry 7:1881–1888

    Google Scholar 

  • Boutin R, Montigny R, Thuizat R (1995) Chronologie K-Ar et 39Ar/40Ar du métamorphisme et du magmatisme des Vosges. Comparaison avec les massifs varisques avoisinants. Géol Fr 1:3–25

    Google Scholar 

  • Bozarth SR (1990) Diagnostic opal phytoliths from pods of selected varieties of common beans (Phaseolus vulgaris). Am Antiq 55:98–104

    Google Scholar 

  • Braissant O, Cailleau G, Aragno M et al (2004) Biologically induced mineralization in the iroko Milicia excelsa (Moraceae): its causes and consequences to the environment. Geobiology 2:59–66

    Google Scholar 

  • Bullen TD, Bailey SW (2005) Identifying calcium sources at an acid deposition-impacted spruce forest: a strontium isotope, alkaline earth element multi-tracer approach. Biogeochem 74:63–99

    Google Scholar 

  • Caldwell CR, Haug A (1981) Temperature dependence of the barley root membrane bound Ca2+ and Mg2+-depedent ATPase. Physiol Plant 53:117–124

    Google Scholar 

  • Canti MG (2003) Aspects of the chemical and microscopic characteristics of plant ashes found in archaeological soils. Catena 54:339–361

    Google Scholar 

  • Capo RC, Stewart BW, Chadwick OA (1998) Strontium isotopes as tracers of ecosystem process: theory and methods. Geoderma 82:190–225

    Google Scholar 

  • Catinon M, Ayrault S, Daudin L et al (2008) Atmospheric inorganic contaminants and their distribution inside stem tissues of Fraxinus excelsior L. Atmos Environ 42:1223–1238

    Google Scholar 

  • Christy AC, Nodland E, Burnham AK et al (1994) Determination of kinetic parameters for the dehydration of calcium oxalate monohydrate by diffuse reflectance FT-IR spectroscopy. Appl Spectrosc 48:561–568

    Google Scholar 

  • Clarkson DT (1984) Calcium transport between tissues and its distribution in the plant. Plant Cell Environ 7:449–456

    Google Scholar 

  • Cobert F, Schmitt AD, Bourgeade P et al (2011) Experimental identification of Ca isotopic fractionations in higher plants. Geochim Cosmochim Acta 75:5467–5482

    Google Scholar 

  • Colla ChA, Wimpenny J, Yin QZ et al (2013) Calcium-isotope fractionation between solution and solids with six, seven, or eight oxygen bounds to Ca(II). Geochim Cosmochim Acta 121:363–373

    Google Scholar 

  • Contreras-Padilla M, Rivera-Munos EM, Gutierrez-Cortez E et al (2015) Characterization of crystalline structures in Opuntia ficus-indica. J Biol Phys 41:99–112

    Google Scholar 

  • Cromack K Jr, Sollins P, Graustein W et al (1979) Calcium oxalate accumulation and soil weathering in mats of the hypogenous fungus Hysterangium crissum. Soil Biol Biochem 11:463–468

    Google Scholar 

  • Dauer JM, Perakis SS (2013) Contribution of calcium oxalate to soil-exchangeable calcium. Soil Sci 178:671–678

    Google Scholar 

  • Dauer JM, Perakis SS (2014) Calcium oxalate contribution to calcium cycling in forests of contrasting nutrient status. For Ecol Manag 334:64–73

    Google Scholar 

  • Desphande BP, Vishwakarma AK (1992) Calcium oxalate crystals in the fusiform cells of the cambium of Gemelina arborea. IAWA Bull 13:297–300

    Google Scholar 

  • Dijkstra FA (2003) Calcium mineralization in the forest floor and surface soil beneath different tree species in the northeastern US. For Ecol Manag 175:185–194

    Google Scholar 

  • Dizeo de Strittmater CG (1973) Nueva técnica de diafanización. Bol Soc Argent Bot 15:126–129

    Google Scholar 

  • Drouet T, Herbauts J, Gruber W et al (2005) Strontium isotope composition as a tracer of calcium sources in two forest ecosystems in Belgium. Geoderma 126:203–223

    Google Scholar 

  • Dudev T, Lim C (2004) Oxyanion selectivity in sulfate and molybdate transport proteins: an ab initio ICDM study. J Am Chem Soc 120:10296–10305

    Google Scholar 

  • Eisenhauer A, Nägler T, Stille P et al (2004) Proposal for an international agreement on Ca notations resulting from discussions at workshops on stable isotope measurements held in Davos (Goldschmidt 2002) and Nice (EGS–AGU–EUG 2003). Geostand Geoanal Res 28:149–151

    Google Scholar 

  • Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer Associates, Sunderland, p 405p

    Google Scholar 

  • Fahn A (1990) Plant anatomy. Pergamon Press, Oxford

    Google Scholar 

  • Fichter J, Turpault MP, Dambrine E et al (1998a) Localization of base cations in particle size fractions of acid forest soils, Vosges Mountains, N-E France. Geoderma 82:295–314

    Google Scholar 

  • Fichter J, Turpault MP, Dambrine E et al (1998b) Mineral evolution of acid forest soils in the Strengbach catchment (Vosges Mountains, N-E France). Geoderma 82:315–340

    Google Scholar 

  • Fink S (1991) The micromorphological distribution of bound calcium in needles of Norway spruce [Picea abies (L.) Karst.]. New Phytol 119:33–40

    Google Scholar 

  • Follet-Gueye ML, Verdus MC, Demarty M et al (1998) Cambium pre-activation in beech correlates with a strong temporary increase of calcium in cambium and phloem but not in xylem cells. Cell Calc 24:205–211

    Google Scholar 

  • Franceschi VR (1989) Calcium oxalate formation is a rapid and reversible process in Lemna minor L. Protoplasma 148:130–137

    Google Scholar 

  • Franceschi V (2001) Calcium oxalate in plants. Trends Plant Sci 7:331

    Google Scholar 

  • Franceschi VR, Nakata PA (2005) Calcium oxalate in plants: formation and function. Ann Rev Plant Biol 56:41–71

    Google Scholar 

  • Fraysse F, Pokrovsky O, Meunier JD (2010) Experimental study of terrestrial plant litter interaction with aqueous solutions. Geochim Cosmochim Acta 74:70–84

    Google Scholar 

  • Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:47–92

    Google Scholar 

  • Gangloff S, Stille P, Schmitt AD et al (2016) Factors controlling the chemical compositions of colloidal and dissolved fractions in soil solutions and the mobility of trace elements in soils. Geochim Cosmochim Acta 189:37–57

    Google Scholar 

  • Gilliham M, Dayod M, Hocking BJ et al (2011) Calcium delivery and storage in plant leaves: exploring the link with water flow. J Exp Bot 62:2233–2250

    Google Scholar 

  • Graustein WC (1989) 87Sr/86Sr ratios measure the sources and flow of strontium in terrestrial ecosystems. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes in ecological research. Springer, Berlin, pp 491–512

    Google Scholar 

  • Grinand C, Barthès BG, Brunet D et al (2012) Prediction of soil organic and inorganic carbon contents at a national scale (France) using mid-infrared reflectance spectroscopy (MIRS). Eur J Soil Sci 63:141–151

    Google Scholar 

  • Guggiari M, Bloque R, Aragno M et al (2011) Experimental calcium-oxalate crystal production and dissolution by selected wood-rot fungi. Int Biodeterior Biodegrad 65:803–809

    Google Scholar 

  • Harmon ME, Nadelhoffer KJ, Blair JM (1999) Measuring decomposition, nutrient turnover, and stores in plant litter. In: Robertson GP, Coleman DC (eds) Standard soil methods for long-term ecological research. Oxford University Press, Oxforf, pp 202–240

    Google Scholar 

  • Hippler D, Schmitt AD, Gussone N et al (2003) Calcium isotopic composition of various reference materials and seawater. Geostand Newsl 27:13–19

    Google Scholar 

  • Horner HT (2012) Peperomia leaf cell wall interface between the multiple hypodermis and crystal-containing photosynthetic layer displays unusual pit fields. Ann Bot 109:1307–1315

    Google Scholar 

  • Hudgins JW, Krekling T, Franceschi VR (2003) Distribution of calcium oxalate crystals in the secondary phloem of conifers: a constitutive defense mechanism? New Phytol 159:677–690

    Google Scholar 

  • Ilarslan H, Palmer RG, Imsande J et al (1997) Quantitative determination of calcium oxalate and oxalate in developing seeds of soybean (Leguminosae). Am J Bot 84:1042–1046

    Google Scholar 

  • Inanaga S, Okasaka A (1995) Calcium and silicon binding compounds in cell walls of rice shoots. Soil Sci Plant Nutr 41:103–110

    Google Scholar 

  • Ito A, Fujiwara A (1968) The relation between calcium and cell wall in growing rice leaf. Plant Cell Physiol 9:433–439

    Google Scholar 

  • Jellison J, Connolly J, Goodell B, Doyle B, Illman B, Fekete F, Ostrofsky A (1997) The role of cations in the biodegradation of wood by the brown rot fungi. Int Biodeterior Biodegrad 39:165–179

    Google Scholar 

  • John DM (1973) Accumulation and decay of litter and net production of forest in tropical west Africa. Oikos 24:430–435

    Google Scholar 

  • Kaiser K, Guggenberger G, Haumaier L et al (2002) The composition of dissolved organic mater in forest soil solutions: changes induced by seasons and passage through the mineral soil. Org Geochem 33:307–318

    Google Scholar 

  • Kalbitz K, Geyer G (2002) Different effects of peat degradation on dissolved organic carbon and nitrogen. Org Geochem 33:319–326

    Google Scholar 

  • Kamatani A (1991) Physical and chemical characteristics of biogenous silica. Mar Biol 8:89–95

    Google Scholar 

  • Kendall C, Sklash MG, Bullen TD (1995) Isotope tracers of water and solute sources in catchments. Solute modelling in catchment systems. Wiley, New York, pp 261–303

    Google Scholar 

  • Kennedy MJ, Hedin LO, Derry LA (2002) Decoupling of unpolluted temperate forests from rock nutrient sources revealed by natural 87Sr/86Sr and 84Sr tracer addition. Proc Natl Acad Sci 99:9639–9644

    Google Scholar 

  • Kinzel H (1989) Calcium in the vacuoles and cell walls of plant tissue. Flora 182:99–125

    Google Scholar 

  • Knutson DM, Hutchins AS, Cromack K (1980) The association of calcium oxalate-utilizing Streptomyces with conifer ectomycorrhizae. Antoine van Leenwenhoek 46:611–619

    Google Scholar 

  • Korth K, Doege SJ, Park SH et al (2006) Medicago truncatula mutants demonstrate the role of plant calcium oxalate crystals as an effective defense against chewing insects. Plant Phys 141:188–195

    Google Scholar 

  • Krieger C, Calvaruso C, Morlot C et al (2017) Identification, distribution and quantification of biominerals in a deciduous forest. Geobiology 15:296–310

    Google Scholar 

  • Lahd Geagea M, Stille P, Millet M et al (2007) REE characteristics and Pb, Sr and Nd isotopic compositions of steel plant emissions. Sci Tot Environ 373:404–419

    Google Scholar 

  • Lahd Geagea M, Stille P, Gauthier-Lafaye F et al (2008) Baseline determination of the atmospheric Pb, Sr and Nd isotopic compositions in the Rhine Valley, Vosges Mountains (France) and the Central Swiss Alps. Appl Geochem 23:1704–1714

    Google Scholar 

  • Lanzalaco AC, Singh PB, Smesko SA et al (1988) The influence of urinary macromolecules of calcium oxalate monohydrate crystal growth. J Urol 193:190–195

    Google Scholar 

  • Lersten NR, Horner HT (2008) Crystal macropatterns in leaves of Fagaceae and Nothofagaceae: a comparative study. Plant Syst Evol 271:239–253

    Google Scholar 

  • Li X, Zhang D, Lynch-Holm VM et al (2003) Isolation of a crystal matrix protein associated with calcium oxalate precipitation in vacuoles of specialized cells. Plant Physiol 133:549–559

    Google Scholar 

  • Liao JD, Boutton TW, Jastrow JD (2006) Organic matter turnover in soil physical fractions following woody plant invasion of grassland: evidence from natural 13C and 15N. Soil Biol Biochem 38:3197–3210

    Google Scholar 

  • Likens GE, Driscoll CT, Buso DC et al (1998) The biogeochemistry of calcium at Hubbard Brook. Biogeochemistry 41:89–173

    Google Scholar 

  • Littke KM, Zabowski D (2007) Influence of calcium fertilization on Douglas-fir foliar nutrition, soil nutrient availability and sinuosity in coastal Washington. For Ecol Manag 247:140–148

    Google Scholar 

  • Lodish H, Baltimore D, Berk A et al (1995) Molecular cell biology, 3rd edn. New York, Freeman

    Google Scholar 

  • Manucharova NA (2009) The microbial destruction of chitin, pectin, and cellulose in soils. Soil Boil 42:1526–1532

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Maurice-Estepa L, Levillain P, Lacour B et al (2000) Advantage of zero-crossing-point first-derivative spectrophotometry for the quantification of calcium oxalate crystalline phases by infrared spectrophotometry. Clin Chim Acta 298:1–11

    Google Scholar 

  • McLaughlin SB, Wimmer R (1999) Tansley review no 104 Calcium physiology and terrestrial ecosystem processes. New Phytol 142:373–417

    Google Scholar 

  • Meheut M, Shauble EA (2014) Silicon isotope fractionation in silicate minerals: insights from first-principles models of phyllosilicates, albite and pyrope. Geochim Cosmochim Acta 134:137–154

    Google Scholar 

  • Melillo JM, Aber JD, Linkins AE et al (1989) Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant Soil 115:189–198

    Google Scholar 

  • Mendham J, Denney R, Barnes J et al (2000) Vogel’s quantitative chemical analysis, 6th edn. Prentice Hall, New York

    Google Scholar 

  • Miller EK, Blum JD, Friedland AJ (1993) Determination of soil exchangeable-cation loss and weathering rates using Sr isotopes. Nature 362:438–441

    Google Scholar 

  • Molano-Flores B (2001) Herbivory and calcium concentrations affect calcium oxalate crystal formation in leaves of Sida (Malvaceae). Ann Bot 88:387–391

    Google Scholar 

  • Monje PV, Baran EJ (1996) On the formation of weddellite in Chamaecereus silvestrii, a Cactaceae species from northern Argentina. Z Naturforsch 51c: 426-428

    Google Scholar 

  • Monje PV, Baran EJ (1997) On the formation of whewellite in the Cactaceae species Opuntia microdasys. Z Naturforsch 52c:267–269

    Google Scholar 

  • Monje P, Baran E (2002) Characterization of calcium oxalates generated as biominerals in cacti. Plant Physiol 128:707–713

    Google Scholar 

  • Monje PV, Baran EJ (2004) Complex biomineralization pattern in cactaceae. J Plant Phys 161:121–123

    Google Scholar 

  • Monje PV, Baran EJ (2005) Evidence of the formation of glushinkite as a biomineral in a Cactaceae species. Phytochemistry 66:611–614

    Google Scholar 

  • Morris SJ, Allen MF (1994) Oxalate-metabolizing microorganisms in sagebrush steppe soil. Biol Fertil Soils 18:255–259

    Google Scholar 

  • Moynier F, Fuji T (2017) Calcium isotope fractionation between aqueous compounds relevant to low-temperature geochemistry, biology and medicine. Sci Rep Nat. https://doi.org/10.1038/srep44255

    Article  Google Scholar 

  • Oyarbide F, Osterrieth M, Cabello M (2001) Trichoderma koningii as a biomineraliziting fungous agent of calcium oxalate crystals in typical Argiudolls of the Los Padres Lake natural reserve (Buenos Aires, Argentina). Microbiol Res 156:1–7

    Google Scholar 

  • Perry CC (1989) Chemical studies of biogenic silica. In: Mann S, Webb J, Williams RJP (eds) Biomineralization: chemical and biochemical perspectives. Verlag, Weinheim, pp 223–256

    Google Scholar 

  • Pilbeam DJ, Morley PS (2007) Calcium. In: Barker AV, Pilbeam DJ (eds) Handbook of plant nutrition. CRC Press, Boca Raton, pp 121–144

    Google Scholar 

  • Polyakov VB, Mineev SD (2000) The use of Mössbauer spectroscopy in stable isotope geochemistry. Geochim Cosmochim Acta 64:849–865

    Google Scholar 

  • Prescott C (2010) Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101:133–149

    Google Scholar 

  • Probst A, Dambrine E, Viville D et al (1990) Influence of acid atmospheric inputs on surface water chemistry and mineral fluxes in a declining spruce stand within a small granitic catchment (Vosges massif-France). J Hydrol 116:101–124

    Google Scholar 

  • Probst A, El Gh’Mari A, Aubert D et al (2000) Strontium as tracer of weathering processes in a silicate catchment polluted by acid atmospheric inputs, Strengbach, France. Chem Geol 170:203–219

    Google Scholar 

  • Prunier J, Chabaux F, Stille P et al (2015) Chemical and isotopic (Sr, U) monitoring of soil solutions from the Strengbach catchment (Vosges mountains, France), evidence for recent weathering evolution. Chem Geol 417:289–305

    Google Scholar 

  • Prychid CJ, Rudall PJ (1999) Calcium oxalate crystals in monocotyledons: a review of their structure and systematics. Ann Bot 84:725–739

    Google Scholar 

  • Ringbom A (1963) Complexation in analytical chemistry. Interscience, New-York

    Google Scholar 

  • Roberts DM, Besl L, Oh SH et al (1992) Expression of a calmodulin methylation mutant affects the growth and development of transgenic tobacco plants. Proc Natl Acad Sci USA 89:8394–8398

    Google Scholar 

  • Rochow JJ (1974) Litter fall relations in a Missouri Forest. Oikos 25:80–85

    Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanisms of organic anion exudation from plant roots. Ann Rev Plant Phys Plant Mol Biol 52:527–560

    Google Scholar 

  • Schmitt AD, Gangloff S, Cobert F et al (2009) High performance automated ion chromatography separation for Ca isotope measurements in multiple natural matrices. J Anal At Spectrom 24:1089–1097

    Google Scholar 

  • Schmitt AD, Vigier N, Lemarchand D et al (2012) Processes controlling the stable isotope compositions of Li, B, Mg and Ca in plants, soils and waters: a review. C R Géosci 344:704–722

    Google Scholar 

  • Schmitt AD, Cobert F, Bourgeade P et al (2013) Calcium isotope fractionation during plant growth under a limiting nutrient supply. Geochim Cosmochim Acta 110:70–83

    Google Scholar 

  • Schmitt AD, Gangloff S, Labolle F et al (2017) Calcium biogeochemical cycle at the beech tree-soil solution interface from the Strengbach CZO (NE France): insights from stable Ca and radiogenic Sr isotopes. Geochim Cosmochim Acta 213:91–109

    Google Scholar 

  • Serdar B, Demiray H (2012) Calcium oxalate crystal types in three oak species (Quercus L.) in Turkey. Turk J Biol 36:386–393

    Google Scholar 

  • Shauble EA (2011) First-principles estimates of equilibrium magnesium isotope fractionation in silicate, oxide, carbonate and hexaaquamagnesium (2+) crystals. Geochim Cosmochim Acta 75:844–869

    Google Scholar 

  • Tait K, Sayer J, Gharieb M et al (1999) Fungal production of calcium oxalate in leaf litter microcosms. Soil Biol Biochem 31:1189–1192

    Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Trockenbrodt M (1994) Quantitative changes of some anatomical characters during bark development in Quercus robur, Ulmus glabra, Populus tremula and Betula pendula. IAWA J 15:387–398

    Google Scholar 

  • Trockenbrodt M (1995) Calcium oxalate crystals in the bark of Quercus robur, Ulmus glabra, Populus tremula and Betula pendula. Ann Bot 75:281–284

    Google Scholar 

  • Tuason MMS, Arocena JM (2009) Calcium oxalate biomineralization by Piloderma fallax in response to various levels of calcium and phosphorus. Appl Environ Mircobiol 75:7079–7085

    Google Scholar 

  • Verrecchia EP, Dumont JL, Verrecchia KE (1993) Role of calcium oxalate biomineralization by fungi in the formation of calcretes: a case study from Nazareth. Isr J Sediment Pet 63:1000–1006

    Google Scholar 

  • Verrecchia EP, Braissant O, Cailleau G (2006) The oxalate-carbonate pathway in soil carbon storage: the role of fungi and oxalotrophic bacteria. In: Gadd M (ed) Fungi in biogeochemical cycles. Cambridge University Press, Cambridge, pp 289–310

    Google Scholar 

  • Viville D, Chabaux F, Stille P et al (2012) Erosion and weathering fluxes in granitic basins: example of the Strengbach catchment (Vosges massif, Eastern France). CATENA 92:122–129

    Google Scholar 

  • Volk GM, Lynch-Holm VJ, Kostman TA et al (2002) The role of druse and raphide calcium oxalate crystals in tissue calcium regulation in Pistia stratiotes leaves. Plant Biol 4:34–45

    Google Scholar 

  • Webb MA (1999) Cell-mediated crystallization of calcium oxalate in plants. Plant Cell 11:751–761

    Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511

    Google Scholar 

  • Willats WG, McCartney L, Mackie W et al (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27

    Google Scholar 

  • WRB (2014) World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. Update 2015. www.fao.org/3/a-i3794e.pdf

  • Zar JH (1984) Biostatistical analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

Download references

Acknowledgements

Colin Fourtet and Eric Pelt are acknowledged for their technical assistance in the laboratory. The manuscript benefitted from constructive reviews by Thomas D. Bullen and an anonymous reviewer. We also thank the editor Jonathan Sanderman for his handling of the manuscript. This project was financially supported by funding from the French CNRS-INSU programme “EC2CO-Cytrix”, by the ANPCyT - Argentine (PICT 1583) and the Mar del Plata University - Argentine (EXA 741/2015). This work is an EOST-LHyGeS contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Désirée Schmitt.

Additional information

Responsible Editor: Jonathan Sanderman.

Glossary

Apoplast

Extracellular continuum formed by the pectocellulosic walls and the void spaces between the plant cells. Water and solutes can navigate through non-selective passive diffusion

Chlorenchyma

A chloroplast-containing parenchyma tissue, such as mesophyll and other green tissues (Fahn 1990)

Chloroplast

organelle in which photosynthesis occurs; contains chlorophylls among other pigments (Fahn 1990)

Cortex

The tissue between the vascular cylinder and epidermis of the axis (Fahn 1990)

Cytoplasm

Material within a living cell, excluding the cell nucleus and is approximately 80% water

Endoplasmic reticulum

Type of organelle in eukaryotic cells that, among others, synthesizes proteins

Epidermis

The outermost cell layer of primary tissues of the plant, sometimes comprising more than one layer (Fahn 1990)

Idioblast

Specific cell which is clearly distinguished from the other cells of the tissue in which it appears, either by size, structure or content (Fahn 1990)

Mesophyll

The photosynthetic parenchymatous tissue situated between the two epidermal layers of the leaf (Fahn 1990)

Parenchyma tissue

Ground tissue composed of living cells which may differ in size, shape and wall structure (Fahn 1990)

Phloem

The principal tissue responsible for the transport of assimilates in the vascular plants (Fahn 1990)

Sclerenchyma tissue

A supporting tissue composed of fibres and or sclereids

Vacuole

Eukaryotic cell organelle. In plant cells, this constitutes 80–90% of the volume and weight. It contains mostly water but also organic molecules

Vascular bundle

A strand of conducting tissue in plants (Fahn 1990)

Xylem

The tissue mainly responsible for conduction of water in vascular plants (Fahn 1990)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmitt, AD., Borrelli, N., Ertlen, D. et al. Stable calcium isotope speciation and calcium oxalate production within beech tree (Fagus sylvatica L.) organs. Biogeochemistry 137, 197–217 (2018). https://doi.org/10.1007/s10533-017-0411-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-017-0411-0

Keywords

Navigation