Skip to main content

Advertisement

Log in

Amorphous silica pools in permafrost soils of the Central Canadian Arctic and the potential impact of climate change

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

We investigated the distribution, storage and landscape partitioning of soil amorphous silica (ASi) in a central Canadian region dominated by tundra and peatlands to provide a first estimate of the amount of ASi stored in Arctic permafrost ecosystems. We hypothesize that, similar to soil organic matter, Arctic soils store large amounts of ASi which may be affected by projected climate changes and associated changes in permafrost regimes. Average soil ASi storage (top 1 m) ranged between 9600 and 83,500 kg SiO2 ha−1 among different land-cover types. Lichen tundra contained the lowest amounts of ASi while no significant differences were found in ASi storage among other land-cover types. Clear differences were observed between ASi storage allocated into the top organic versus the mineral horizon of soils. Bog peatlands, fen peatlands and wet shrub tundra stored between 7090 and 45,400 kg SiO2 ha−1 in the top organic horizon, while the corresponding storage in lichen tundra, moist shrub- and dry shrub tundra only amounted to 1500–1760 kg SiO2 ha−1. Diatoms and phytoliths are important components of ASi storage in the top organic horizon of peatlands and shrub tundra systems, while it appears to be a negligible component of ASi storage in the mineral horizon of shrub tundra classes. ASi concentrations decrease with depth in the soil profile for fen peatlands and all shrub tundra classes, suggesting recycling of ASi, whereas bog peatlands appeared to act as sinks retaining stored ASi on millennial time scales. Our results provide a conceptual framework to assess the potential effects of climate change impacts on terrestrial Si cycling in the Arctic. We believe that ASi stored in peatlands are particularly sensitive to climate change, because a larger fraction of the ASi pool is stored in perennially frozen ground compared to shrub tundra systems. A likely outcome of climate warming and permafrost thaw could be mobilization of previously frozen ASi, altered soil storage of biogenically derived ASi and an increased Si flux to the Arctic Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexandre A, Bouvet M, Abbadie L (2011) The role of savannas in the terrestrial Si-cycle: a case study from Lamto, Ivory Coast. Glob Planet Change 78:162–169

    Article  Google Scholar 

  • Allen JT, Brown L, Sanders R, Moore CM, Mustard A, Fielding S, Lucas M, Rixen M, Savidge G, Henson S, Mayor D (2005) Diatom carbon export enhanced by silicate up-welling in the North East Atlantic. Nature 437:728–732

    Article  Google Scholar 

  • Anisimov OA, Vaughan TV, Callaghan TV, Furgal C, Marchant H, Prowse TD, Viljálmsson H, Walsh JE (2007) Polar regions (Arctic and Antarctic) Climate Change 2007: Impacts, Adaptation and Vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of working group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 653–685

    Google Scholar 

  • Aoki Y, Hoshino M, Matsubara T (2007) Silica and testate amoebae in a soil under pine-oak forest. Geoderma 142:29–35

    Article  Google Scholar 

  • Barão AL (2015) Biogenic and non-biogenic Si pools in terrestrial ecosystems: results from a novel analysis method. Dissertation for the degree of doctor in Biology, University of Antwerp, p 138

  • Barão AL, Clymans W, Vandevenne F, Meire P, Conley DJ, Struyf E (2014) Pedogenic and biogenic alkaline extracted Si distributions along a temperate land use gradient. Eur J Soil Sci. doi:10.1111/ejss.12161

    Google Scholar 

  • Bennett PC, Siegel DI, Hill BM, Glaser PH (1991) Fate of silicate minerals in a peat bog. Geology 19:328–331

    Article  Google Scholar 

  • Blecker SW, McCulley RL, Chadwick OA, Kelly EF (2006) Biologic cycling if silica across a grassland bioclimosequence. Glob Biogeochem Cycles 20:B3023

    Article  Google Scholar 

  • Brown J, Ferrians OJ Jr, Heginbottom JA, Melnikov ES (1997) Circum-Arctic map of permafrost and ground-ice conditions, 1:10,000,000, Map CP-45. U.S.A. Geological Survey, International Permafrost Association, Washington, DC

    Google Scholar 

  • Callaghan TV, Tweedie CE, Åkerman J (2011) Multi-decadal changes in tundra environments and ecosystems: synthesis of the International Polar Year-Back to the Future Project (IPY-BTF). Ambio 40:705–716

    Article  Google Scholar 

  • Camill P, Lynch JA, Clark JS, Adams JB, Jordan B (2001) Changes in biomass, aboveground net primary production, and peat accumulation following permafrost thaw in the boreal peatlands of Manitoba, Canada. Ecosystems 4:461–478

    Article  Google Scholar 

  • Carey JC, Fulweiler RW (2011) Human activities directly alter watershed dissolved silica fluxes. Biogeochemistry. doi:10.1007/s10533-011-9671-2

    Google Scholar 

  • Carey JC, Fulweiler RW (2012) The terrestrial silica pump. PLOS One 7:e52932

    Article  Google Scholar 

  • Carnelli AL, Madella M, Theurillat JP (2001) Biogenic silica production in selected alpine plant species and plant communities. Ann Bot 87:425–434

    Article  Google Scholar 

  • Carroll ML, Townshend JRG, DiMiceli CM, Loboda T, Sohlberg RA (2011) Shrinking lakes of the Arctic: spatial relationships and trajectory of change. Geophys Res Lett 38:L20406

    Article  Google Scholar 

  • Clarke J (2003) The occurrence and significance of biogenic opal in the regolith. Earth Sci Rev 60:175–194

    Article  Google Scholar 

  • Clymans W, Struyf E, Govers G, Vandevenne F, Conley DJ (2001) Anthropogenic impact on amorphous silica pools in temperate soils. Biogeosciences 8:2281–2293

    Article  Google Scholar 

  • Clymans W, Verbeeck T, Tielens S, Struyf E, Vandevenne F, Govers G (2014) Amorphous silica preservation in an anthropogenic soil: an explorative study of “Plaggen” soils. In: Clarson SJ, Owen MJ, Smith SD, Van Dyke M, Brook M, Mabry J (eds) Progress in silicones and silicone-modified materials, vol 1154. ACS Symposium Series, Boston, pp 3–14

  • Conley DJ (2002) Terrestrial ecosystems and the global biogeochemical silica cycle. Glob Biogeochem Cycles. doi:10.1029/2002GB001894

    Google Scholar 

  • Conley DJ, Schelske CL, Stoermer EF (1993) Modification of silica biogeochemistry with eutrophication in aquatic systems. Mar Ecol Prog Ser 101:179–192

    Article  Google Scholar 

  • Cornelis JT, Ranger J, Iserentant A, Delvaux B (2010) Tree species impact the terrestrial cycle of silicon through various uptake. Biogeochemistry 97:231–245

    Article  Google Scholar 

  • Cornelis JT, Titeux H, Ranger J, Delvaux B (2011a) Identification and distribution of the readily soluble silicon pool in a temperate forest soil below three distinct tree species. Plant Soil 342:369–378

    Article  Google Scholar 

  • Cornelis JT, Delvaux B, Georg RB, Lucas Y, Ranger J, Opfergelt S (2011b) Tracing the origin of dissolved silicon transferred from various soil–plant systems towards rivers: a review. Biogeosciences 8:89–112

    Article  Google Scholar 

  • Cornelis JT, Dumon M, Tolossa AR, Delvaux B, Deckers J, Van Ranst E (2014) The effect of pedological conditions on the sources and sinks of silicon in the Vertic Planosols in south-western Ethiopia. Catena 112:131–138

    Article  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  Google Scholar 

  • DeJong R, Blaauw M, Chambers FM, Christensen TR, de Vleeschouwer F, Finsinger W, Fronzek S, Johansson M, Kokfelt U, Lamentowicz M, LeRoux G, Mauquoy D, Mitchell EAD, Nichols JE, Samaritani E, Geel B (2010) Climate and peatlands. In: Dodson J (ed) Changing climates, Earth systems and Society, International Year of Planet Earth. Springer. doi:10.1007/978-90-481-8716-4_5

  • DeMaster DJ (1981) The supply and accumulation of silica in the marine environment. Geochim Cosmochim Acta 45:1715–1732

    Article  Google Scholar 

  • Derry LA, Kurtz AC, Ziegler K, Chadwick OA (2005) Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature 433:728–730

    Article  Google Scholar 

  • Epstein E (1994) The anomaly of silicon in plant biology. PNAS 91:11–17

    Article  Google Scholar 

  • Ettl H, Gerloff J, Heynig H, Mollenhauer D (1991) Süßwasserflora von Mitteleuropa, Bacillariophyceae. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Falkowski P (2000) The global carbon cycle: a test of our knowledge of the earth as a system. Science 290:291–296

    Article  Google Scholar 

  • Fishkis O, Ingwersen J, Lamers M, Denysenko D, Streck T (2010) Phytolith transport in soil: a field study using fluorescent labelling. Geoderma 157:27–36

    Article  Google Scholar 

  • Fraysse F, Pokrovsky OS, Schott J, Meunier J-M (2009) Surface chemistry and reactivity of plant phytoliths in aqueous solutions. Chem Geol 258:197–206

    Article  Google Scholar 

  • Fraysse F, Pokrovsky OS, Meunier J-D (2010) Experimental study of terrestrial plant litter interaction with aqueous solutions. Geochim Cosmochim Acta 74:70–84

    Article  Google Scholar 

  • Frey KE, McClelland JW (2009) Impacts of permafrost degradation on Arctic river biogeochemistry. Hydrol Process 23:169–182

    Article  Google Scholar 

  • Frey KE, Siegel DI, Smith L (2007) Geochemistry of west Siberian streams and their potential response to permafrost degradation. Water Resour Res. doi:10.1029/2006WR004902

    Google Scholar 

  • Frings PJ, Clymans W, Jeppesen E, Lauridsen TL, Struyf E, Conley DJ (2014) Lack of steady-state in the global biogeochemical Si cycle: emerging evidence from lake Si sequestration. Biogeochemistry. doi:10.1007/s10533-013-9944-z

    Google Scholar 

  • Georgiadis A, Sauer D, Herrmann L, Breuer J, Zarei M, Stahr K (2014) Testing a new method for sequential silicon extraction on soils of a temperate-humid climate. Soil Res 52:645–657

    Article  Google Scholar 

  • Henriet C, De Jaeger N, Dorel M, Opfergelt S, Delvaux B (2008) The reserve of weatherable primary silicates impacts the accumulation of biogenic silicon in volcanic ash soils. Biogeochemistry 90:209–223

    Article  Google Scholar 

  • Hinzman LD, Bettez ND, Bolton WR, Chapin FS, Dyurgerov MB (2005) Evidence and implications of recent climate change in northern Alaska and other Arctic regions. Clim Change 72:251–298

    Article  Google Scholar 

  • Hodson MJ, White PJ, Mead A, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot 96:1027–1046

    Article  Google Scholar 

  • Holmes RM, McClelland JW, Peterson BJ, Tank SE, Bulygina E, Eglinton TI, Gordeev VV, Gurtovaya TY, Raymond PA, Repeta DJ, Staples R, Striegl RG, Zhulidov AV, Zimov SA (2012) Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas. Estuaries Coasts 35:369–382

    Article  Google Scholar 

  • Hugelius G, Kuhry P, Tarnocai C, Virtanen T (2010) Soil organic carbon pools in a periglacial landscape: a case study from the Central Canadian Arctic. Permafrost Periglac Process 21:16–29

    Article  Google Scholar 

  • Hugelius G, Strauss J, Zubrzycki S, Harden JW, Schuur EAG, Ping CL, Schirrmeister L, Grosse G, Michaelson GJ, Koven CD, O’Donnell JA, Elberling B, Mishra U, Camill P, Yu Z, Palmtag J, Kuhry P (2014) Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11:6573–6593. doi:10.5194/bg-11-6573-2014

    Article  Google Scholar 

  • Humborg C (2008) Changes in dissolved silicate loads to the Baltic Sea—the effects of lakes and reservoirs. J Mar Syst 73:223

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53:51–77

    Article  Google Scholar 

  • Johansson T, Malmer N, Crill PM, Friborgs T, Åkerman JH, Mastepanov M, Christensen TR (2006) Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and radiative forcing. Glob Change Biol 12:2352–2369

    Article  Google Scholar 

  • Karlsson Mård J, Lyon SW, Destouni G (2014) Temporal behavior of lake size- distribution in a thawing permafrost landscape in northwestern Siberia. Remote Sens 6:621

    Article  Google Scholar 

  • Klein E, Berg EE, Dial R (2005) Wetland drying and succession across the Kenai Peninsula lowlands, south-central Alaska. Can J For Res 35:1931–1941

    Article  Google Scholar 

  • Kokfelt U, Struyf E, Randsalu L (2009) Diatoms in peat-dominant producers in a changing environment. Soil Biol Biogeochem 41:1764–1766

    Article  Google Scholar 

  • Kokfelt U, Reuss N, Struyf E, Sonesson M, Rundgren M, Skog G, Rosén P, Hammarlund D (2010) Wetland development, permafrost history and nutrient cycling inferred from late Holocene peat and lake sediment records in subarctic Sweden. J Paleolimnol. doi:10.1007/s10933-010-9406-8

    Google Scholar 

  • Kristiansen S, Hoell EE (2002) The importance of silicon for marine production. Hydrobiologia 484:21–31

    Article  Google Scholar 

  • Lawrence DM, Slater AG (2005) A projection of severe near-surface permafrost degradation during the 21st century. Geophys Res Lett. doi:10.1029/2005GL025080

    Google Scholar 

  • Lloyd AH, Yoshikawa K, Fastie CL, Hinzman L, Fraver M (2004) Effects of permafrost degradation on woody vegetation at Arctic treeline on the Seward Peninsula, Alaska. Permafrost Periglac Process 14:93–101

    Article  Google Scholar 

  • Loucaides S, Van Cappellen P, Roubeix V, Moriceau B, Ragueneau O (2011) Controls on the recycling and preservation of biogenic silica from biomineralization to burial. Silicon. doi:10.1007/s12633-011-9092-9

    Google Scholar 

  • Lucas Y (2001) The role of plants in controlling rates and products of weathering: importance of biological pumping. Annu Rev Earth Planet Sci 29:135–163

    Article  Google Scholar 

  • Markewitz D, Richter DD (1998) The bio in aluminum and silicon geochemistry. Biogeochemistry 42:235–252

    Article  Google Scholar 

  • McClelland JW, Déry SJ, Peterson BJ, Holmes RM, Wood EF (2006) A pan-arctic evaluation of changes in river discharge during the latter half of the 20th century. Geophys Res Lett 33:L06715

    Article  Google Scholar 

  • Meltzer SE, Knapp AK, Kirkman KP, Smith MD, Blair JM, Kelly EF (2010) Fire and grazing impacts on silica production and storage in grass dominated ecosystems. Biogeochemistry 97:263–278

    Article  Google Scholar 

  • Meltzer SE, Chadwick OA, Hartshorn AS, Khomo LM, Knapp AK, Kelly EF (2012) Lithologic controls on biogenic silica cycling in South African savanna ecosystems. Biogeochemistry 108:317–334

    Article  Google Scholar 

  • Meunier JD, Colin F, Alarcon C (1999) Biogenic silica storage in soils. Geology 27:835–838

    Article  Google Scholar 

  • Meunier JD, Keller C, Guntzer F, Riotte J, Braun JJ, Anupama K (2014) Assessment of the 1% Na2CO3 technique to quantify the phytolith pool. Geoderma 216:30–35

    Article  Google Scholar 

  • Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D et al (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6:045509

    Article  Google Scholar 

  • Olsen MS, Callaghan TV, Reist JD, Reiersen LO, Dahl-Jensen D, Granskog MA, Goodison B, Hovelsrud GK, Johansson M, Kallenborn R, Key J, Klepikov A, Meier W, Overland JE, Prowse TD, Sharp M, Vincent WF, Walsh J (2011) The changing Arctic cryosphere and likely consequences: an overview. Ambio 40:111–118

    Article  Google Scholar 

  • Ping CL, Michaelson GJ, Jorgenson MT, Kimble JM, Epstein H, Romanovsky VE, Walker DA (2008) High stocks of soil organic carbon in the North American Arctic region. Nat Geosci 1:615–619

    Article  Google Scholar 

  • Pokrovsky OS, Reynolds BC, Prokushkin AS, Schott J, Viers J (2013) Silicon isotope variations in Central Siberian rivers during basalt weathering in permafrost-dominated larch forests. Chem Geol 355:103–116

    Article  Google Scholar 

  • Puppe D, Kaczorek D, Wanner M, Sommer M (2014) Dynamics and drivers of the protozoic Si pool along a 10-year chronosequence of initial ecosystem states. Ecol Eng 70:477–482

    Article  Google Scholar 

  • Ragueneau O, Schultes S, Bidle K, Claquin P, Moriceau B (2006) Si and C interactions in the world ocean: importance of ecological processes and implications for the role of diatoms in the biological pump. Glob Biogeochem Cycles 20:1–15

    Article  Google Scholar 

  • Rickert D, Schlüter M, Wallmann K (2002) Dissolution kinetics of biogenic silica from the water column to the sediments. Geochim Cosmochim Acta 66:439–455

    Article  Google Scholar 

  • Riordan B, Verbyla D, McGuire AD (2006) Shrinking ponds in subarctic Alaska based on 1950–2002 remotely sensed images. J Geophys Res Lett 111:G04002

    Google Scholar 

  • Rodionov A, Flessa H, Grabe M, Kazansky OA, Shibistova O, Guggenberger G (2007) Organic carbon and total nitrogen variability in permafrost-affected soils in a forest tundra ecotone. Eur J Soil Sci 58:1260–1272

    Article  Google Scholar 

  • Saccone L, Conley DJ, Koning E, Sauer D, Sommer M, Kaczorek D, Blecker SW, Kelly EF (2007) Assessing the extraction and quantification of amorphous silica in soils of forest and grassland ecosystems. Eur J Soil Sci 58:1446–1459

    Article  Google Scholar 

  • Saccone L, Conley DJ, Likens GE, Bailey SW, Buso DC, Johnson CE (2008) Factors that control the range and variability of amorphous silica in soils in the Hubbard Brook Experimental Forest. SSSAJ 72:1637–1644

    Article  Google Scholar 

  • Sauer D, Saccone L, Conley DJ, Herrmann L, Sommer M (2006) Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry 80:89–108

    Article  Google Scholar 

  • Schimel J, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Front Microbiol. doi:10.3389/fmicb.2012.00348

    Google Scholar 

  • Schuur EAG, Bockheim J, Canadell JP, Euskirchen E, Field CB, Goryachkin SV, Hagemann S, Kuhry P, Lafleur PM, Lee H, Mazhitova G, Nelson FE, Rinke A, Romanovsky VE, Shiklomanov N, Tarnocai C, Venevsky S, Vogel JG, Zimov SA (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58:701–714

    Article  Google Scholar 

  • Smith LC, Sheng Y, MacDonald GM, Hinzman LD (2005) Disappearing Arctic Lakes. Science 308:1429

    Article  Google Scholar 

  • Sommer M, Jochheim H, Höhn A, Breuer J, Zagorski Z, Busse J, Barkusky D, Meier K, Puppe D, Wanner M, Kaczorek D (2013) Si cycling in a forest biogeosystem-the importance of transient state biogenic Si pools. Biogeosciences 10:4991–5007

    Article  Google Scholar 

  • Stow DA, Hope A, McGuire D, Verbyla D, Gamon J, Huemmrich F, Houston S, Racine C, Sturm M, Tape K, Hinzman L, Yoshikawa K, Tweedie C, Noyle B, Silapaswan C, Douglas D, Griffith B, Jia G, Epstein H, Walker D, Daeschner S, Petersen A, Zhou L, Myneni R (2004) Remote sensing of vegetation and land-cover change in Arctic tundra ecosystems. Remote Sens Environ 89:281–308

    Article  Google Scholar 

  • Street-Perrott A, Barker PA (2008) Biogenic silica: a neglected component of the coupled global continental biogeochemical cycles of carbon and silicon. Earth Surf Proc Land 33:1436–1457

    Article  Google Scholar 

  • Struyf E, Conley DJ (2012) Emerging understanding of the ecosystem silica filter. Biogeochemistry 107:9–18

    Article  Google Scholar 

  • Struyf E, Smis A, Van Damme S, Meire P, Conley DJ (2009a) The global biogeochemical silicon cycle. Silicon 1:207–213

    Article  Google Scholar 

  • Struyf E, Opdekamp W, Backx H, Jacobs S, Conley DJ, Meire P (2009b) Vegetation and proximity to the river control amorphous silica storage in a riparian wetland (Biebrza National Park, Poland). Biogeosciences 6:623–631

    Article  Google Scholar 

  • Struyf E, Mörth CM, Humborg C, Conley DJ (2010) An enormous amorphous silica stock in boreal wetlands. J Geophys Sci 115:G04008

    Google Scholar 

  • Sturm M, Schimel J, Michaelson G, Welker JM, Oberbauer SF, Liston GE, Fahnestock J, Romanovsky VE (2005) Winter biological processes could help convert Arctic tundra to shrubland. Bioscience 55:17–26

    Article  Google Scholar 

  • Tape K, Sturm M, Racine C (2006) The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob Change Biol 12:686–702

    Article  Google Scholar 

  • Tarnocai C (2006) The effect of climate change on carbon in Canadian peatlands. Global Planet Change 53:222–232

    Article  Google Scholar 

  • Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G (2009) Soil organic carbon pools in the northern circumpolar permafrost. Glob Biogeochem Cycles 23:GB2023

    Article  Google Scholar 

  • Tréguer P, Nelson DM, Van Bennekom AJ, DeMaster DJ, Leynaert A, Quéguiner B (1995) The silica balance in the world ocean: a Reestimate. Science 268:375–379

    Article  Google Scholar 

  • Tremblay B, Lévesque E, Boudreau S (2012) Recent expansion of erect shrubs in the low Arctic: evidence from Eastern Nunavik. Environ Res Lett 7:035501

    Article  Google Scholar 

  • Van Cappellen P, Dixit S, Beusekom J (2002) Biogenic silica dissolution in the oceans: reconciling experimental and field-based dissolution rates. Glob Biogeochem Cycles. doi:10.1029/2011GB001431

    Google Scholar 

  • Van Kerckvoorde A, Trappeniers K, Nijs I (2000) Terrestrial soil diatom assemblages from different vegetation types in Zackenberg (Northeast Greenland). Polar Biol 23:392–400

    Article  Google Scholar 

  • Weintraub MN, Schimel JP (2003) Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in Arctic tundra soils. Ecosystems 6:129–143

    Article  Google Scholar 

  • Weintraub MN, Schimel JP (2005) Nitrogen cycling and the spread of shrubs control changes in the carbon balance of Arctic tundra ecosystems. Bioscience 55:408–415

    Article  Google Scholar 

  • White AF, Vivit DV, Schulz MS, Bullen TD, Evett RR, Aagarwal J (2012) Biogenic and pedogenic controls on Si distribution and cycling in grasslands of the Santa Cruz chronosequence, California. Geochim Cosmochim Acta 94:72–94

    Article  Google Scholar 

  • Zhang Y, Chen W, Riseborough DW (2008) Transient projections of permafrost distribution in Canada during the 21st century under scenarios of climate change. Global Planet Change 60:443–456

    Article  Google Scholar 

  • Zimov SA, Schuur EA, Chapin FS III (2006) Permafrost and the global carbon budget. Science 312:1612–1613

    Article  Google Scholar 

Download references

Acknowledgments

Carolina Funkey and Guillaume Fontorbe are thanked for support with laboratory analyses and introduction to SEM photography, respectively. All the members of the “Sicon group” as well as two anonymous reviewers are thanked for providing comments improving earlier versions of this manuscript. The original fieldwork at Tulemalu Lake and subsequent SOC analysis were supported through a grant from the Swedish Research Council to P. Kuhry. This work was partially supported by a grant to D.J. Conley from the Swedish Research Council and the Knut and Alice Wallenberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Alfredsson.

Additional information

Responsible Editor: C. T. Driscoll.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfredsson, H., Hugelius, G., Clymans, W. et al. Amorphous silica pools in permafrost soils of the Central Canadian Arctic and the potential impact of climate change. Biogeochemistry 124, 441–459 (2015). https://doi.org/10.1007/s10533-015-0108-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-015-0108-1

Keywords

Navigation