Skip to main content
Log in

NC10 bacteria promoted methane oxidation coupled to chlorate reduction

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The strictly anaerobic serum bottles were applied to investigate methane oxidation coupled to chlorate (ClO3) reduction (MO-CR) without exogenous oxygen. 0.35 mM ClO3 was consumed within 20 days at the reduction rate of 17.50 μM/d, over three times than that of ClO4. Chlorite (ClO2) was not detected throughout the experiment and the mass recovery of Cl was over 89%. Isotope tracing results showed most of 13CH4 was oxided to CO2, and the electrons recovery reached to 77.6%. Small amounts of 13CH4 was consumed for DOC production probably through aerobic methane oxidation process, with oxygen generated from disproportionation reaction. In pMMO (key enzyme in aerobic oxidation of methane) inhibition tests, ClO3 reduction rate was slowed to 7. 0 μmol/d by 2 mM C2H2, real-time quantitative PCR also showed the transcript abundance of pMMO and Cld were significantly dropped at the later period of experiment, indicating that the O2 disproportionated from ClO2 was utilized to active CH4. NC10 bacteria Candidatus Methylomirabilis, related closely to oxygenic denitrifiers M. oxyfera, was detected in the system, and got enriched along with chlorate reduction. Several pieces of evidence supported that NC10 bacteria promoted CH4 oxidation coupled to ClO3 reduction, these oxygenic denitrifiers may perform ClO2 disproportionation to produce O2, and then oxidized methane intracellularly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alrashed W, Lee J, Park J, Rittmann B, Tang Y, Neufeld J, Lee H-S (2018) Hypoxic methane oxidation coupled to denitrification in a membrane biofilm. Chem Eng J 348:745–753

    CAS  Google Scholar 

  • Atashgahi S, Hornung B, van der Waals MJ, da Rocha UN, Hugenholtz F, Nijsse B, Molenaar D, van Spanning R, Stams AJM, Gerritse J, Smidt H (2018) A benzene-degrading nitrate-reducing microbial consortium displays aerobic and anaerobic benzene degradation pathways. Sci Rep 8:12

    Google Scholar 

  • Bardiya N, Bae JH (2011) Dissimilatory perchlorate reduction: a review. Microbiol Res 166:237–254

    CAS  PubMed  Google Scholar 

  • Campbell IT, Brand U (1998) Henry's lawHenry's law. Geochemistry. Encyclopedia of Earth Science. Springer, Dordrecht, pp 315–315. https://doi.org/10.1007/1-4020-4496-8_155

    Chapter  Google Scholar 

  • Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267

    CAS  PubMed  Google Scholar 

  • Chen R, Luo Y-H, Chen J-X, Zhang Y, Wen L-L, Shi L-D, Tang Y, Rittmann BE, Zheng P, Zhao H-P (2016) Evolution of the microbial community of the biofilm in a methane-based membrane biofilm reactor reducing multiple electron acceptors. Environ Sci Pollut Res 23:9540–9548

    CAS  Google Scholar 

  • Coates JD, Achenbach LA (2004) Microbial perchlorate reduction: rocket-fuelled metabolism. Nat Rev Microbiol 2:569–580

    CAS  PubMed  Google Scholar 

  • Dudley M, Salamone A, Nerenberg R (2008) Kinetics of a chlorate-accumulating, perchlorate-reducing bacterium. Water Res 42:2403–2410

    CAS  PubMed  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels H, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, den Camp H, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543

    CAS  PubMed  Google Scholar 

  • Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, Op den Camp HJM, Jetten MSM, Strous M (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 10:3164–3173

    CAS  PubMed  Google Scholar 

  • Ettwig KF, Speth DR, Reimann J, Wu ML, Jetten MSM, Keltjens JT (2012) Bacterial oxygen production in the dark. Biochim Biophys Acta-Bioenerg 1817:S155–S155

    Google Scholar 

  • Haroon MF, Hu SH, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan ZG, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567

    CAS  PubMed  Google Scholar 

  • Hatamoto M, Kimura M, Sato T, Koizumi M, Takahashi M, Kawakami S, Araki N, Yamaguchi T (2014) Enrichment of denitrifying methane-oxidizing microorganisms using up-flow continuous reactors and batch cultures. PLoS One 9:12

    Google Scholar 

  • Hatamoto M, Sato T, Nemoto S, Yamaguchi T (2017) Cultivation of denitrifying anaerobic methane-oxidizing microorganisms in a continuous-flow sponge bioreactor. Appl Microbiol Biotechnol 101:5881–5888

    CAS  PubMed  Google Scholar 

  • Hinrichs KU, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805

    CAS  PubMed  Google Scholar 

  • Kits K, Klotz M, Stein L (2015) Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium methylomonas denitrificans, sp. nov. type strain FJG1. Environ Microbiol 17:3219–3232

    CAS  PubMed  Google Scholar 

  • Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334

    CAS  PubMed  Google Scholar 

  • Kool DM, Zhu BL, Rijpstra WIC, Jetten MSM, Ettwig KF, Damste JSS (2012) Rare branched fatty acids characterize the lipid composition of the intra-aerobic methane oxidizer "Candidatus Methylomirabilis oxyfera". Appl Environ Microbiol 78:8650–8656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lai C-Y, Lv P-L, Dong Q-Y, Yeo SL, Rittmann BE, Zhao H-P (2018a) Bromate and nitrate bioreduction coupled with poly-β-hydroxybutyrate production in a methane-based membrane biofilm reactor. Environ Sci Technol 52:7024–7031

    CAS  PubMed  Google Scholar 

  • Lai CY, Dong QY, Rittmann BE, Zhao HP (2018b) Bioreduction of antimonate by anaerobic methane oxidation in a membrane biofilm batch reactor. Environ Sci Technol 52:8693–8700

    CAS  PubMed  Google Scholar 

  • Lai C-Y, Dong Q-Y, Chen J-X, Zhu Q-S, Yang X, Chen W-D, Zhao H-P, Zhu L (2018c) Role of extracellular polymeric substances in a methane based membrane biofilm reactor reducing vanadate. Environ Sci Technol 52:10680–10688

    CAS  PubMed  Google Scholar 

  • Lai CY, Wen LL, Shi LD, Zhao KK, Wang YQ, Yang X, Rittmann BE, Zhou C, Tang Y, Zheng P, Zhao HP (2016a) Selenate and nitrate bioreductions using methane as the electron donor in a membrane biofilm reactor. Environ Sci Technol 50:10179–10186

    CAS  PubMed  Google Scholar 

  • Lai CY, Zhong L, Zhang Y, Chen JX, Wen LL, Shi LD, Sun YP, Ma F, Rittmann BE, Zhou C, Tang YN, Zheng P, Zhao HP (2016b) Bioreduction of chromate in a methane-based membrane biofilm reactor. Environ Sci Technol 50:5832–5839

    CAS  PubMed  Google Scholar 

  • Lawton TJ, Rosenzweig AC (2016) Methane-oxidizing enzymes: an upstream problem in biological gas-to-liquids conversion. J Am Chem Soc 138:9327–9340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindqvist MH, Johansson N, Nilsson T, Rova M (2012) Expression of chlorite dismutase and chlorate reductase in the presence of oxygen and/or chlorate as the terminal electron acceptor in ideonella dechloratans. Appl Environ Microbiol 78:4380–4385

    CAS  PubMed  Google Scholar 

  • Lu Y-Z, Fu L, Ding J, Ding Z-W, Li N, Zeng RJ (2016) Cr(VI) reduction coupled with anaerobic oxidation of methane in a laboratory reactor. Water Res 102:445–452

    CAS  PubMed  Google Scholar 

  • Luo YH, Chen R, Wen LL, Meng F, Zhang Y, Lai CY, Rittmann BE, Zhao HP, Zheng P (2015) Complete perchlorate reduction using methane as the sole electron donor and carbon source. Environ Sci Technol 49:2341–2349

    CAS  PubMed  Google Scholar 

  • Lv PL, Shi L-D, Dong Q-Y, Rittmann B, Zhao H-P (2020) How nitrate affects perchlorate reduction in a methane-based biofilm batch reactor. Water Res 171:115397

    CAS  PubMed  Google Scholar 

  • Lv PL, Shi LD, Wang Z, Rittmann B, Zhao HP (2019) Methane oxidation coupled to perchlorate reduction in a membrane biofilm batch reactor. Sci Total Environ 667:9–15

    CAS  PubMed  Google Scholar 

  • Maixner F, Wagner M, Lucker S, Pelletier E, Schmitz-Esser S, Hace K, Spieck E, Konrat R, Le Paslier D, Daims H (2008) Environmental genomics reveals a functional chlorite dismutase in the nitrite-oxidizing bacterium 'Candidatus Nitrospira defluvii'. Environ Microbiol 10:3043–3056

    CAS  PubMed  Google Scholar 

  • Mlynek G, Sjoblom B, Kostan J, Fureder S, Maixner F, Gysel K, Furtmuller PG, Obinger C, Wagner M, Daims H, Djinovic-Carugo K (2011) Unexpected diversity of chlorite dismutases: a catalytically efficient dimeric enzyme from nitrobacter winogradsky. J Bacteriol 193:2408–2417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ontiveros-Valencia A, Tang Y, Zhao H-P, Friese D, Overstreet R, Smith J, Evans P, Rittmann BE, Krajmalnik-Brown R (2014) Pyrosequencing analysis yields comprehensive assessment of microbial communities in pilot-scale two-stage membrane biofilm reactors. Environ Sci Technol 48:7511–7518

    CAS  PubMed  Google Scholar 

  • Padilla CC, Bristow LA, Sarode N, Garcia-Robledo E, Ramirez EG, Benson CR, Bourbonnais A, Altabet MA, Girguis PR, Thamdrup B, Stewart FJ (2016) NC10 bacteria in marine oxygen minimum zones. ISME J 10:2067–2071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raghoebarsing A, Pol A, Pas-Schoonen K, Smolders A, Ettwig K, Rijpstra I, Schouten S, Sinninghe-Damste J, Op den Camp H, Jetten M, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921

    CAS  PubMed  Google Scholar 

  • Shen LD, Wu HS, Gao ZQ, Li J, Liu X (2016) Presence of diverse Candidatus Methylomirabilis oxyfera-like bacteria of NC10 phylum in agricultural soils. J Appl Microbiol 120:1552–1560

    CAS  PubMed  Google Scholar 

  • Shi L-D, Wang M, Li Z-Y, Lai C-Y, Zhao H-P (2019) Dissolved oxygen has no inhibition on methane oxidation coupled to selenate reduction in a membrane biofilm reactor. Chemosphere 234:855–863

    CAS  PubMed  Google Scholar 

  • Shi LD, Lv PL, Niu ZF, Lai CY, Zhao HP (2020a) Why does sulfate inhibit selenate reduction: Molybdenum deprivation from Mo-dependent selenate reductase. Water Res 178:9

    Google Scholar 

  • Shi LD, Lv PL, Wang M, Lai CY, Zhao HP (2020b) A mixed consortium of methanotrophic archaea and bacteria boosts methane -dependent selenate reduction. Sci Total Environ 732:9

    Google Scholar 

  • Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, Dore J (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waghmode TR, Haque MM, Kim SY, Kim PJ (2015) Effective suppression of methane emission by 2-bromoethanesulfonate during rice cultivation. Plos One 10:e0142569

    PubMed  PubMed Central  Google Scholar 

  • Wei XM, He R, Chen M, Su Y, Ma RC (2016) Conversion of methane-derived carbon and microbial community in enrichment cultures in response to O-2 availability. Environ Sci Poll Res 23:7517–7528

    CAS  Google Scholar 

  • Wu ML, Ettwig KF, Jetten MS, Strous M, Keltjens JT, van Niftrik L (2011) A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus 'Methylomirabilis oxyfera'. Biochem Soc Trans 39:243–248

    CAS  PubMed  Google Scholar 

  • Xie T, Yang Q, Winkler MKH, Wang D, Zhong Y, An H, Chen F, Yao F, Wang X, Wu J (2018) Perchlorate bioreduction linked to methane oxidation in a membrane biofilm reactor: performance and microbial community structure. J Hazard Mater 357:244–252

    CAS  PubMed  Google Scholar 

  • Zedelius J, Rabus R, Grundmann O, Werner I, Brodkorb D, Schreiber F, Ehrenreich P, Behrends A, Wilkes H, Kube M, Reinhardt R, Widdel F (2011) Alkane degradation under anoxic conditions by a nitrate-reducing bacterium with possible involvement of the electron acceptor in substrate activation. Environ Microbiol Rep 3:125–135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Feng J, Chen S, Zhao Z, Li B, Wang Y, Jia J, Li S, Wang Y, Yan M, Lu K, Hao H (2019) Geographical patterns of nirS gene abundance and nirS-type denitrifying bacterial community associated with activated sludge from different wastewater treatment plants. Microb Ecol 77:304–316

    CAS  PubMed  Google Scholar 

  • Zhang Y, Chen JX, Wen LL, Tang YN, Zhao HP (2016) Effects of salinity on simultaneous reduction of perchlorate and nitrate in a methane-based membrane biofilm reactor. Environ Sci Pollut Res 23:24248–24255

    CAS  Google Scholar 

  • Zhao HP, Van Ginkel S, Tang Y, Kang DW, Rittmann B, Krajmalnik-Brown R (2011) Interactions between perchlorate and nitrate reductions in the biofilm of a hydrogen-based membrane biofilm reactor. Environ Sci Technol 45:10155–10162

    CAS  PubMed  Google Scholar 

  • Zhou C, Wang Z, Ontiveros-Valencia A, Long M, Lai C-Y, Zhao H-P, Xia S, Rittmann BE (2017) Coupling of Pd nanoparticles and denitrifying biofilm promotes H-2-based nitrate removal with greater selectivity towards N-2. Appl Catal B-Environ 206:461–470

    CAS  Google Scholar 

Download references

Acknowledgments

Authors greatly thank the “The National Key Technology R&D Program (2018YFC1802203)”, the “National Natural Science Foundation of China (Grant Nos. 51878596, 21577123)”, and the “Natural Science Funds for Distinguished Young Scholar of Zhejiang Province (LR17B070001)”, for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He-Ping Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZY., Li, X., Tan, B. et al. NC10 bacteria promoted methane oxidation coupled to chlorate reduction. Biodegradation 31, 319–329 (2020). https://doi.org/10.1007/s10532-020-09912-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-020-09912-z

Keywords

Navigation