Skip to main content

Advertisement

Log in

Vulnerability assessment of Taxus wallichiana in the Indian Himalayan Region to future climate change using species niche models and global climate models under future climate scenarios

  • Original Research
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Climate change is a major threat to biodiversity as many species are facing the risk of extinction due to their inability to adapt to the changes in temperature, precipitation, and other environmental variables. The impact of climate change on the habitat distribution of Taxus wallichiana, a medicinally important endangered tree species, has not been studied specifically for the Indian Himalayan region (IHR). We assessed the vulnerability of the species to climate change using Ecological Niche Modeling (ENM) in conjunction with two latest global climate models (GCMs) viz., HadGEM3-GC31-LL and IPSL-CM6A-LR, under two future scenarios i.e. Shared Socioeconomic Pathways (SSPs) - SSP126 and SSP585 from Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report, 2023. Based on current distribution of the species and bioclimatic conditions., the Maxent-derived projections indicated significant reduction in its suitable habitat in IHR. Under the moderate scenario i.e. SSP126, suitable habitats are expected to decrease to 6,313,494 ha (10.62% of the total geographical area of IHR) with HadGEM3-GC31-LL and to 4,161,437 ha (7.00%) with IPSL-CM6A-LR from the present distribution area of 8,132,637 ha (13.68%). Under high-emission SSP585 scenario, the predicted habitat area is expected to decline to 4,833,212 ha (8.13%) with HadGEM3-GC31-LL and to 3,204,306 ha (5.39%) with IPSL-CM6A-LR.Annual mean temperature, isothermality, and annual precipitation were important environmental variables impacting the species distribution and models’ predictive capacity. The model outputs clearly predict a gloomy picture under both the future climate scenarios for T. wallichiana emphasizing the need for a targeted conservation effort for the species. .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data are available with the authors. These will be made available on request. 

References

  • Adhikari P, Agnihotri V, Suman SK, Pandey A (2023) Deciphering the Antimicrobial potential of Taxus Wallichiana Zucc.: identification and characterization using bioassay-guided fractionation. Chem Biodivers 20:e202200572. https://doi.org/10.1002/cbdv.202200572

    Article  CAS  PubMed  Google Scholar 

  • Barik SK, Adhikari D (2012) Predicting the geographical distribution of an invasive species (Chromolaena odorata L. (King) & HE Robins) in the Indian subcontinent under climate change scenarios. Invasive alien plants: an ecological appraisal for the Indian subcontinent. CABI, Wallingford, UK, pp 77–88

    Google Scholar 

  • Barik SK, Behera MD, Adhikari D (2022) Realizing certainty in an uncertain future climate: modeling suitable areas for conserving wild Citrus species under different change scenarios in India. Environ Monit Assess 194:864

    Article  CAS  PubMed  Google Scholar 

  • Bevan-Jones R (2017) The Ancient Yew: A History of Taxus baccata (3rd ed.). Oxbow Books. https://doi.org/10.2307/j.ctv138wt3t

  • Bhardwaj V (2023) Taxus Wallichiana Zucc. (Himalayan Yew): a Medicinal Plant Exhibiting Antibacterial properties. Adv Exp Med Biol 1370:145–153. https://doi.org/10.1007/5584_2023_772

    Article  CAS  PubMed  Google Scholar 

  • Boucher O, Servonnat J, Albright AL, Aumont O, Balkanski Y, Bastrikov V, Vuichard N et al (2020) Presentation and evaluation of the IPSL-CM6A‐LR climate model. Journal of Advances in Modeling Earth Systems, 12(7), e2019MS002010

  • Cragg M, Newman DJ (2005) Plants as a source of anti-cancer agents. J Ethnopharmacol 100(1–2):72–79

    Article  CAS  PubMed  Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315

    Article  Google Scholar 

  • Gajurel JP, Werth S, Shrestha KK, Scheidegger C (2014) Species distribution modeling of Taxus wallichiana (himalayan yew) in Nepal Himalaya. Asian J Conserv Biol 3:127–134

    Google Scholar 

  • Gauchan DP, Vélëz H, Acharya A, Östman JR, Lundén K, Elfstrand M, García-Gil MR (2021) Annulohypoxylon sp. strain MUS1, an endophytic fungus isolated from Taxus Wallichiana Zucc., produces taxol and other bioactive metabolites. 3 Biotech 11:1–16

    Article  Google Scholar 

  • GBIF.org (2023) GBIF occurrence download. https://doi.org/10.15468/dl.ztemtn

  • Hijmans RJ, Guarino L, Cruz M, Rojas E (2001) Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet Resour Newsl 15–19

  • IPCC (2023) Summary for policymakers. In: Lee H, Romero J (eds) Climate Change 2023: synthesis report. Contribution of Working groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core writing Team. IPCC, Geneva, Switzerland, pp 1–34. doi: https://doi.org/10.59327/IPCC/AR6-9789291691647.001

    Chapter  Google Scholar 

  • Juyal D, Thawani V, Thaledi S, Joshi M (2014) Ethnomedical Properties of Taxus Wallichiana Zucc. (Himalayan Yew). J Tradit Complement Med 4:159–161. https://doi.org/10.4103/2225-4110.136544

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamsal P, Kumar L, Aryal A, Atreya K (2018) Invasive alien plant species dynamics in the himalayan region under climate change. Ambio 47:697–710. https://doi.org/10.1007/s13280-018-1017-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Zhu W, Xie Z, Qiao K (2019) Integration of multiple climate models to predict range shifts and identify management priorities of the endangered Taxus wallichiana in the Himalaya–Hengduan mountain region. J Res 31:2255–2272. https://doi.org/10.1007/s11676-019-01009-5

    Article  Google Scholar 

  • Máthé Á (2020) Introduction to Medicinal and Aromatic Plants in North America. Medicinal and aromatic plants of North America. Springer International Publishing, Cham, pp 1–29

    Chapter  Google Scholar 

  • Meher JK, Das L (2024) Probabilistic evaluation of three generations of climate models for simulating precipitation over the Western Himalayas. J Earth Syst Sci 133:15. https://doi.org/10.1007/s12040-023-02216-9

    Article  Google Scholar 

  • Muellner-Riehl A (2019) Mountains as evolutionary arenas: patterns, emerging approaches, paradigm shifts, and their implications for plant phylogeographic research in the Tibeto-Himalayan region. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.00195

  • Nisar M, Qayum M, Adhikari A, Khan I, Kaleem W, Ali Z, Choudhary M (2010) 4-deacetylbaccatin III: a proposed biosynthetic precursor of paclitaxel from the bark of Taxus Wallichiana. Nat Prod Commun 5:1934578X1000501. https://doi.org/10.1177/1934578x1000501104

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12(5):361–371

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3–4):231–259

    Article  Google Scholar 

  • Rathore P, Roy A, Karnatak H (2019) Modelling the vulnerability of Taxus Wallichiana to climate change scenarios in South East Asia. Ecol Indic 102:199–207

    Article  Google Scholar 

  • Singh PP, Behera MD, Rai R, Shankar U, Upadhaya K, Nonghuloo IM, Mir AH, Barua S, Naseem M, Srivastava PK, Tiwary R, Gupta A, Gupta V, Adhikari D, Nand S, Barik SK (2023) Morpho-physiological and demographic responses of three threatened Ilex species to changing climate aligned with species distribution models in future climate scenarios. Environ Monit Assess 195(1):139. https://doi.org/10.1007/s10661-022-10594-8

    Article  CAS  Google Scholar 

  • Sinha D (2019) A review on ethnobotanical, phytochemical and pharmacological profile of Pinus wallichiana a.b. jacks. Pharmacogn J 11(4):624–631. https://doi.org/10.5530/pj.2019.11.100

    Article  CAS  Google Scholar 

  • Sinha D (2020) Ethnobotanical and pharmacological importance of Taxus Wallichiana Zucc. Plant Sci Today 7(1):122–134. https://doi.org/10.14719/pst.2020.7.1.636

    Article  CAS  Google Scholar 

  • Thomas P, Farjon A (2011) Taxus wallichiana. The IUCN Red List of Threatened Species 2011: e.T46171879A9730085. https://doi.org/10.2305/IUCN.UK.2011-2.RLTS.T46171879A9730085.en

  • Thomas P, Lianming G (2013) T. wallichiana. In: Threatened Conifers of The World. http://threatenedconifers.rbge.org.uk/taxa/details/992

  • Thomas PA, Polwart A (2003) Taxus baccata L. Biological Flora of the British Isles. J Ecol 91:489–524

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC et al (2004) Extinction risk from climate change. Nature 427(6970):145–148

    Article  CAS  PubMed  Google Scholar 

  • Thuiller W, Midgley GF, Hughes GO, Bomhard B, Drew G, Rutherford MC, Woodward FI (2006) Endemic species and ecosystem sensitivity to climate change in Namibia. Glob Change Biol 12(5):759–776

    Article  Google Scholar 

  • Travis JM (2003) Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc R Soc Lond B Biol Sci 270(1514):467–473

    Article  CAS  Google Scholar 

  • Velde DGV, Georg GI, Gollapudi SR, Jampani HB, Liang XZ, Mitscher LA, Ye QM (1994) Wallifoliol, a taxol congener with a novel carbon skeleton, from Himalayan Taxus Wallichiana. J Nat Prod 57(6):862–867

    Article  Google Scholar 

  • Wang J, Wang Y, Feng J, Chen C, Chen J, Long T et al (2019) Differential responses to climate and land-use changes in threatened Chinese taxus species. Forests 10(9):766. https://doi.org/10.3390/f10090766

    Article  Google Scholar 

  • Yousaf A, Waseem M, Javed A, Baig S, Ismail B, Baig A et al (2022) Augmented anticancer effect and antibacterial activity of silver nanoparticles synthesized by using Taxus Wallichiana leaf extract. PeerJ 10:e14391. https://doi.org/10.7717/peerj.14391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yousaf A, Hadi R, Khan N, Ibrahim F, Moin H, Rahim S et al (2022a) Identification of suitable habitat for Taxus Wallichiana and Abies pindrow in moist temperate forest using maxent modelling technique. Saudi J Biol Sci 29(12):103459. https://doi.org/10.1016/j.sjbs.2022.103459

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaiyou J, Guifang X, Hong-zhi C (2019) Distribution of paclitaxel and its precursors in different parts of Taxus Wallichiana var. Mairei. Bangladesh J Bot 48(3):619–623. https://doi.org/10.3329/bjb.v48i3.47939

    Article  Google Scholar 

  • Zareian MJ, Dehban H, Gohari A (2023) Evaluation of the accuracy of CMIP6 models in estimating the temperature and precipitation of Iran based on a network analysis. Water Irrig Manage 12(4):783–797

    Google Scholar 

  • Zu K, Wang Z, Zhu X, Lenoir J, Shrestha N, Lyu T, Luo A, Li Y, Ji C, Peng S, Zhou J (2021) Upward shift and elevational range contractions of subtropical mountain plants in response to climate change. Sci Total Environ 783:146896

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RT and PPS did the field work, collected data and wrote the first draft of the manuscript, DA and MDB performed the modelling and analysis, and SKB conceptualized and supervised the study, corrected the manuscript and arranged funding. All authors reviewed the manuscript.

Corresponding author

Correspondence to S. K. Barik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by Saroj Kanta Barik (SK. Barik).

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwary, R., Singh, P.P., Adhikari, D. et al. Vulnerability assessment of Taxus wallichiana in the Indian Himalayan Region to future climate change using species niche models and global climate models under future climate scenarios. Biodivers Conserv (2024). https://doi.org/10.1007/s10531-024-02859-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10531-024-02859-0

Keywords

Navigation