Skip to main content
Log in

Impact of grasslands grazed by cattle on taxonomic and functional aspects of bird assemblages in floodplain wetlands of the Paraná River

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Floodplain wetlands are frequently used for cattle grazing so understanding the impact of this activity is crucial for biodiversity conservation and management. Cattle grazing can lead to the replacement of tall natural grasslands with shorter, grazed ones, a structurally different habitat. Understanding the effects of this change on birds in floodplain wetlands is necessary for effective conservation efforts. Here, we assessed the relationship between presence-absence of grazed grasslands in the floodplain landscape and i) number of habitats per site, ii) taxonomic and functional bird diversities, iii) frequency and abundance of bird species, and iv) bird functional traits, using data from extensive bird sampling (via point counts) in the Paraná River floodplain. We found scale-dependent results. At point-count scale, presence of grazed grasslands led to an increase in number of habitats, bird species richness, and functional diversity per site. When we compared bird diversity indices based on the combination of all point counts using rarefaction curves, only functional diversity was higher in counts with grazed grasslands. One species (Geothlypis velata) was associated with the absence of grazed grasslands while 27 species (17%) were related to their presence. Thirteen bird traits (48%), including non-wetland dependency, were positively associated with grazed grasslands. Our results show that grazed grasslands increase bird diversities because a set of species, mainly birds typical of agricultural uplands, are associated with this cattle-created habitat. Further, birds associated with grazed grasslands modified the functional structure of assemblages, adding even exclusive traits such as brood parasitism that can pose a threat to floodplain birds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Abrial E, Lorenzón R, Rabuffetti A et al (2021) Hydroecological implication of long-term flow variations in the middle Paraná river floodplain. J Hydrol 126957. https://doi.org/10.1016/j.jhydrol.2021.126957

  • Agostinho AA, Pelicice FM, Petry AC et al (2007) Fish diversity in the upper Paraná River basin: habitats, fisheries, management and conservation. Aquat Ecosyst Health Manag 10:174–186. https://doi.org/10.1080/14634980701341719

    Article  Google Scholar 

  • Azpiroz AB, Isacch JP, Dias RA et al (2012) Ecology and conservation of grassland birds in southeastern South America: a review. J Field Ornithol 83:217–246. https://doi.org/10.1111/j.1557-9263.2012.00372.x

    Article  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting Linear mixed-effects models using lme4. J Stat Softw 67. https://doi.org/10.18637/jss.v067.i01

  • Belsky AJ, Matzke A, Uselman S (1999) Survey of livestock influences on stream and riparian ecosystems in the western United States. J Soil Water Conserv 54:419–431

    Google Scholar 

  • Bock CE, Saab VA, Rich TD, Dobkin DS (1993) Effects of livestock grazing on neotropical migratory landbirds in western North America. In: Finch, Deborah M, Stangel, Peter W (eds) Status and management of neotropical migratory birds: September 21–25, 1992, Estes Park, Colorado Gen Tech Rep RM-229 Fort Collins, vol 229. Rocky Mountain Forest and Range Experiment Station, US Dept of Agriculture, Colo, pp 296–309

    Google Scholar 

  • Bolker BM (2018) GLMM FAQ. GitHub Inc http://bbolker.github.io/mixedmodels-misc/glmmFAQ.html

  • Botta-Dukát Z (2005) Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J Veg Sci 16:533–540. https://doi.org/10.1111/j.1654-1103.2005.tb02393.x

    Article  Google Scholar 

  • Brooks M, Kristensen K, van Benthem K et al (2017) glmmTMB balances speed and flexibility among packages for zero-inflated generalized Linear mixed modeling. R J 9:378–400. https://doi.org/10.32614/RJ-2017-066

    Article  Google Scholar 

  • Brown AM, Warton DI, Andrew NR et al (2014) The fourth-corner solution – using predictive models to understand how species traits interact with the environment. Methods Ecol Evol 5:344–352. https://doi.org/10.1111/2041-210X.12163

    Article  Google Scholar 

  • Christensen RHB (2022) Ordinal - Regression models for ordinal data. R package version 2022.11-16. https://CRAN.R-project.org/package=ordinal

  • Cingolani AM, Noy-Meir I, Renison DD, Cabido M (2008) La ganadería Extensiva: ¿es compatible con la conservación de la biodiversidad y de Los suelos? Ecología Austral 18:253–271

    Google Scholar 

  • Coetzee BW, Chown SL (2016) Land-use change promotes avian diversity at the expense of species with unique traits. Ecol Evol 6:7610–7622

    Article  PubMed  PubMed Central  Google Scholar 

  • Colwell MA, Dodd SL (1995) Waterbird communities and habitat relationships in coastal pastures of northern California. Conserv Biol 9:827–834

    Article  Google Scholar 

  • Davis TJ (1994) The Ramsar Convention manual: a guide to the convention on wetlands of international importance especially as waterfowl habitat. Ramsar Convention Bureau, Gland

    Google Scholar 

  • De Caceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574

    Article  PubMed  Google Scholar 

  • Di Bitetti MS (2012) ¿Qué es El hábitat? Ambigüedad en El uso de jerga técnica. Ecología Austral 22:137–143

    Google Scholar 

  • Dobkin DS, Rich AC, Pyle WH (1998) Habitat and Avifaunal Recovery from Livestock Grazing in a riparian Meadow System of the Northwestern Great Basin. Conserv Biol 12:209–221. https://doi.org/10.1111/j.1523-1739.1998.96349.x

    Article  Google Scholar 

  • Ducatez S (2014) Brood parasitism: a good strategy in our changing world? Proc Royal Soc B: Biol Sci 281:20132404. https://doi.org/10.1098/rspb.2013.2404

    Article  Google Scholar 

  • Ehlers Smith YC, Ehlers Smith DA, Seymour CL et al (2015) Response of avian diversity to habitat modification can be predicted from life-history traits and ecological attributes. Landsc Ecol 30:1225–1239. https://doi.org/10.1007/s10980-015-0172-x

    Article  Google Scholar 

  • Filloy J, Bellocq MI (2007) Patterns of bird abundance along the agricultural gradient of the Pampean region. Agric Ecosyst Environ 120:291–298. https://doi.org/10.1016/j.agee.2006.09.013

    Article  Google Scholar 

  • Fraixedas S, Lindén A, Piha M et al (2020) A state-of-the-art review on birds as indicators of biodiversity: advances, challenges, and future directions. Ecol Ind 118:106728. https://doi.org/10.1016/j.ecolind.2020.106728

    Article  Google Scholar 

  • Francis RJ, Brandis KJ, Kingsford RT, Callaghan CT (2020) Quantifying bird diversity at three sites of differing herbivore presence. J Ornithol 161:1117–1127. https://doi.org/10.1007/s10336-020-01804-6

    Article  Google Scholar 

  • Frutos AE, Ronchi-Virgolini AL, Giraudo AR, Piña CI (2020) How does cattle raising affect bird communities in the delta of the Paraná River? J Nat Conserv 57:125872. https://doi.org/10.1016/j.jnc.2020.125872

    Article  Google Scholar 

  • Greeney HF, Boesman PFD (2022) Southern Yellowthroat (Geothlypis velata), version 1.0. In: Sly ND (ed) Birds of the World. Cornell Lab of Ornithology, Ithaca, New York

    Google Scholar 

  • Guthery FS, Stormer FA (1984) Wildlife management scenarios for Playa Vegetation. Wildl Soc Bull (1973–2006) 12:227–234

    Google Scholar 

  • Hartig F (2022) DHARMa: Residual diagnostics for hierarchical (Multi-Level /Mixed) regression models. R package version 0.4.6. https://CRAN.R-project.org/package=DHARMa

  • Harvolk S, Symmank L, Sundermeier A et al (2015) Human impact on plant biodiversity in functional floodplains of heavily modified rivers – A comparative study along German federal waterways. Ecol Eng 84:463–475. https://doi.org/10.1016/j.ecoleng.2015.09.019

    Article  Google Scholar 

  • Howland BW, Stojanovic D, Gordon IJ et al (2016) Birds of a feather flock together: using trait-groups to understand the effect of macropod grazing on birds in grassy habitats. Biol Conserv 194:89–99

    Article  Google Scholar 

  • Iriondo MH, Paggi JC, Parma MJ (eds) (2007) The Middle Paraná River: limnology of a subtropical wetland. Springer Science and Business Media

  • Isacch J, Cardoni D (2011) Different grazing strategies are necessary to Conserve Endangered Grassland Birds in Short and Tall Salty grasslands of the flooding pampas. The Condor 113:724–734. https://doi.org/10.1525/cond.2011.100123

    Article  Google Scholar 

  • Isacch JP, Martínez MM (2003) Habitat use by non-breeding shorebirds in flooding pampas grasslands of Argentina. Waterbirds 26:494–500

    Article  Google Scholar 

  • IUCN (2023) The IUCN Red List of Threatened Species. Version 2022-2

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305

    Article  PubMed  Google Scholar 

  • Laliberté E, Legendre P, Shipley B (2014) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12.1

  • Lorenzón RE, Beltzer AH, Olguin PF, Ronchi-Virgolini AL (2016) Habitat heterogeneity drives bird species richness, nestedness and habitat selection by individual species in fluvial wetlands of the Paraná River, Argentina. Austral Ecol 41:829–841. https://doi.org/10.1111/aec.12375

    Article  Google Scholar 

  • Lorenzón RE, Beltzer AH, Peltzer P et al (2017) Habitat-mediated influence of water‐level fluctuations on waterbird occurrence in floodplain wetlands of the Parana River, Argentina. River Res Appl 33:1494–1505. https://doi.org/10.1002/rra.3199

    Article  Google Scholar 

  • Lorenzón RE, Beltzer AH, Olguin PF et al (2019) Temporal variation of bird assemblages in dynamic fluvial wetlands: seasonality and influence of water level and habitat availability. Revista De Biología Tropical 67:1131–1145

    Article  Google Scholar 

  • Lorenzón R-E, León E-J, Juani M et al (2020) Can agroecological management increase functional diversity of birds in rice fields? Revista De Biología Tropical 68:873–883

    Article  Google Scholar 

  • Lowther PE (2023) Lists of victims and hosts of the parasitic cowbirds (Molothrus). Field Museum. https://www.datocms-assets.com/44232/1680014702-molothrus-hosts-ver-14jan2023.pdf. Accessed 17 May 2023

  • Magnano AL, Krug P, Casa V, Quintana RD (2019) Changes in vegetation composition and structure following livestock exclusion in a temperate fluvial wetland. Appl Veg Sci 22:484–493. https://doi.org/10.1111/avsc.12453

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG (2015) Wetlands. John Wiley & Sons, Hoboken

    Google Scholar 

  • Murillo-Pacheco JI, Rös M, Escobar F et al (2016) Effect of wetland management: are lentic wetlands refuges of plant-species diversity in the Andean–Orinoco Piedmont of Colombia? PeerJ 4:e2267

    Article  PubMed  PubMed Central  Google Scholar 

  • Neiff JJ (1999) El régimen de pulsos en ríos y grandes humedales de Sudamérica. In: Tópicos sobre humedales subtropicales y templados de Sudamérica. Oficina Regional de Ciencia yTecnología de la UNESCO para América Latina y el Caribe -ORCYT, Montevideo, Uruguay, pp 99–149

  • Nestler JM, Baigún CR, Oldani N, Weber LJ (2007) Contrasting the Middle Paraná and Mississippi Rivers to develop a template for restoring large floodplain river ecosystems. Int J River Basin Manage 5:305–319

    Article  Google Scholar 

  • Ottvall R, Smith HG (2006) Effects of an agri-environment scheme on wader populations of coastal meadows of southern Sweden. Agric Ecosyst Environ 113:264–271. https://doi.org/10.1016/j.agee.2005.10.018

    Article  Google Scholar 

  • Quintana R, Bó R, Astrada E, Reeves C (2014) Lineamientos para una ganadería ambientalmente sustentable en El Delta Del Paraná. Fundación Humedales/Wetlands International LAC, Buenos Aires

    Google Scholar 

  • Quiroga VM, Ronchi-Virgolini AL, Lorenzón RE, Lammertink M (2021) Interactions of the influences of habitat protection, habitat heterogeneity, and periodic flooding on waterbirds of the lower Paraná River, Argentina. Biotropica 53:1031–1041. https://doi.org/10.1111/btp.12923

    Article  Google Scholar 

  • R Core Team (2022) R: a language and environment for statistical computing. R Foundation for Statistical Computing

  • Ralph CJ, Geupel GR, Pyle P et al (1996) Manual De métodos De Campo Para El monitoreo de aves terrestres. USDA Forest Service Gen. Tech. Rep. PSW-GTR-159-Web, Washington DC

    Google Scholar 

  • Robbins CS (1981) Effect of time of day on bird activity. Stud Avian Biol 6:275–286

    Google Scholar 

  • Rosenzweig ML (1995) Species Diversity in Space and Time. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sabattini RA, Lallana VH (2007) Aquatic macrophytes. In: Iriondo MH, Paggi JC, Parma MJ (eds) The Middle Paraná River. Springer Science and Business Media, pp 205–226

  • Seidl AF, Silva J dos, de Moraes SV (2001) AS Cattle ranching and deforestation in the Brazilian Pantanal. Ecological Economics 36:413–425. https://doi.org/10.1016/S0921-8009(00)00238-X

  • Seimandi G, Leticia M, Sánchez M et al (2021) Effect of rotational grazing management on vegetation of floodplain wetlands. Wetlands Ecol Manage 29. https://doi.org/10.1007/s11273-021-09802-y

  • Sheard C, Neate-Clegg M, Alioravainen N et al (2020) Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat Commun 11. https://doi.org/10.1038/s41467-020-16313-6

  • Sica YV, Gavier-Pizarro GI, Pidgeon AM et al (2018) Changes in bird assemblages in a wetland ecosystem after 14 years of intensified cattle farming. Austral Ecol 43:786–797

    Article  Google Scholar 

  • Stotz DF, Fitzpatrick JW, Parker TA III, Moskovits DK (1996) Neotropical birds: ecology and conservation. University of Chicago Press, Chicago

    Google Scholar 

  • Sullivan SMP, Watzin MC, Keeton WS (2007) A riverscape perspective on habitat associations among riverine bird assemblages in the Lake Champlain Basin, USA. Landscape Ecol 22:1169–1186. https://doi.org/10.1007/s10980-007-9097-3

    Article  Google Scholar 

  • ter Braak C, Cormont A, Dray S (2012) Improved testing of species traits-environment relationships in the fourth-corner problem. Ecology 93:1525–1526. https://doi.org/10.1890/12-0126.1

    Article  PubMed  Google Scholar 

  • Thouverai E, Pavoine S, Tordoni E et al (2021) Rarefy: rarefaction methods. R package version 1.1. https://CRAN.R-project.org/package=Rarefy

  • Tobias JA, Sheard C, Pigot AL et al (2022) AVONET: morphological, ecological and geographical data for all birds. Ecol Lett 25:581–597. https://doi.org/10.1111/ele.13898

    Article  PubMed  Google Scholar 

  • Vaccaro A, Filloy J, Bellocq M (2019) What land use better preserves taxonomic and functional diversity of birds in a grassland biome? Avian Conserv Ecol 14:1. https://doi.org/10.5751/ACE-01293-140101

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ et al (2009) Mixed effects models and extensions in ecology with R. Springer Science and Business Media, New York

    Book  Google Scholar 

Download references

Acknowledgements

We are grateful to John G. Blake for English editing and constructive comments on the drafts of this paper.

Funding

This work was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) under Grant PIP 0463 and Francois Vuilleumier Fund 2008 (Neotropical Ornithological Society).

Author information

Authors and Affiliations

Authors

Contributions

Lorenzón, R.E, Beltzer, A.H. and Ronchi-Virgolini A.L, performed study conception and design. Material preparation, data collection and analysis were performed by all authors. The first draft of the manuscript was written by Rodrigo E. Lorenzón and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rodrigo E. Lorenzón.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by David Hawksworth.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorenzón, R.E., Sovrano, L.V., León, E.J. et al. Impact of grasslands grazed by cattle on taxonomic and functional aspects of bird assemblages in floodplain wetlands of the Paraná River. Biodivers Conserv 32, 4873–4894 (2023). https://doi.org/10.1007/s10531-023-02736-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-023-02736-2

Keywords

Navigation