Skip to main content

Advertisement

Log in

DNA barcodes reveal the hidden arthropod diversity in a threatened cactus forest of the central Andes

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Desert ecosystems are currently threatened by human activities resulting in the rapid decline of xerophytic plants and specialized fauna. In South America, the demise of cactus species already resulted in the population decline of > 30% of the iconic giant columnar cactus Trichocereus terscheckii. The increasing vulnerability of these keystone species could trigger a cascade of secondary extinctions in highly dependent organisms. Thus, necrotic cacti constitute an important habitat for desert arthropods, yet little is known on the hidden diversity of this neglected niche. We used DNA barcode techniques to survey the diversity of arthropods in a threatened cactus forest dominated by T. terscheckii in northwestern Argentina. We obtained a total of 542 mitochondrial barcode sequences, resulting in 323 Molecular Taxonomic Units (MOTUs) associated to the xerophytic forest and 21 MOTUs exclusive to the giant cactus necrosis. Our results indicated that the area is a biodiversity hotspot within the harsh Andean desert and suggests that nearly 30 species could occur in the decaying cactus, representing the highest richness of cactophilic arthropods recorded in any cactus on the continent to date (6 orders and 16 families). The community structure of cactophilic arthropods showed a phylogenetic clustering pattern, suggesting the coexistence of closely related species. Overall, our study indicates that the giant cactus necrosis sustains a particular phylogenetic diversity of desert arthropods, while demonstrating the efficacy of DNA barcodes for biodiversity assessments in complex and poorly understood ecological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Details of data analyses and accession numbers have been uploaded as part of the Supplementary Material. Ethical statement: Ethical approval was not required for this study. All procedures complied with relevant guidelines and regulations. Sample permits were provided by the Secretariat of Environment and Sustainable Development of San Juan Province, Argentina (No. 1300-0236).

References

  • Aballay FH, Arriagada G, Flores GE, Centeno ND (2013) An illustrated key to and diagnoses of the species of Histeridae (Coleoptera) associated with decaying carcasses in Argentina. ZooKeys 261:61

    Article  Google Scholar 

  • Agurell S (1969) Cactaceae alkaloids. I. Lloydia 32(2):206–216

    CAS  Google Scholar 

  • Arnett RH Jr (2000) American insects: a handbook of the insects of America north of Mexico, 2nd edn. CRC Press, Florida

    Book  Google Scholar 

  • Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D et al (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10(4):e1003537

    Article  Google Scholar 

  • Bouzas S, Barbarich MF, Soto EM, Padró J, Carreira VP, Soto IM (2021) Specialization and performance tradeoffs across hosts in cactophilic Drosophila species. Ecol Entomol 6:877–888

    Article  Google Scholar 

  • Breitmeyer CM, Markow TA (1998) Resource availability and population size in cactophilic Drosophila. Funct Ecol 12(1):14–21

    Article  Google Scholar 

  • Brodie JF, Aslan CE, Rogers HS, Redford KH, Maron JL, Bronstein JL, Groves CR (2014) Secondary extinctions of biodiversity. Trends Ecol Evol 29(12):664–672

    Article  Google Scholar 

  • Carreira V, Bouzas S, Padró J, Soto IM (2022) P450 gene family mediates allelochemical detoxification and tolerance to alkaloids in cactophilic Drosophila. Entomol Exp et Appl 170(11):948–956

  • Castillo ML, Reyes-Castillo P (2009) Passalidae, insects which live in decaying logs. Tropical biology and conservation management. In: Del Claro K (ed) Encyclopedia of life support systems. Eolss Publishers, Oxford, pp 112–133

    Google Scholar 

  • Castrezana S, Markow TA (2001) Arthropod diversity in necrotic tissue of three species of columnar cacti (Cactaceae). Can Entomol 133(3):301–309

    Article  Google Scholar 

  • Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84(1):45–67

    Article  Google Scholar 

  • Chao A, Jost L (2015) Estimating diversity and entropy profiles via discovery rates of new species. Methods Ecol Evol 6(8):873–882

    Article  Google Scholar 

  • Cisneros CMG, Heringer G, Domen YSM, Sánchez LR, Meira-Neto JAA (2021) The environmental filtering and the conservation of tropical dry forests in mountains in a global change scenario. Biodivers Conserv 30:1–17. https://doi.org/10.1007/s10531-021-02215-6

    Article  Google Scholar 

  • Coleman JM, Benowitz KM, Jost AG, Matzkin LM (2018) Behavioral evolution accompanying host shifts in cactophilic Drosophila larvae. Ecol Evol 8(14):6921–6931

    Article  Google Scholar 

  • Colines B, Soto IM, De Panis DN, Padró J (2018) Experimental hybridization in allopatric species of the Drosophila repleta group (Diptera: Drosophilidae): implications for the mode of speciation. Biol J Linn Soc 123(2):290–301

    Article  Google Scholar 

  • Crespo JE, Divito F, Pueyrredón J, Hasson E, Soto EM (2022) Effects of breeding resource and environmental temperature on adult locomotor activity in cactophilic Drosophila. Entomol Exp Appl 170(6):513–521

    Article  Google Scholar 

  • De Panis DN, Padró J, Furió-Tarí P, Tarazona S, Milla Carmona PS, Soto IM et al (2016) Transcriptome modulation during host shift is driven by secondary metabolites in desert Drosophila. Mol Ecol 25(18):4534–4550

    Article  Google Scholar 

  • Drezner TD (2014) The keystone saguaro (Carnegiea gigantea, Cactaceae): a review of its ecology, associations, reproduction, limits, and demographics. Plant Ecol 215(6):581–595

    Article  Google Scholar 

  • Durant SM, Pettorelli N, Bashir S, Woodroffe R, Wacher T, De Ornellas P et al (2012) Forgotten biodiversity in desert ecosystem. Science 336(6087):1379–1380

    Article  CAS  Google Scholar 

  • Dury C (1916) Natural history notes of southern Arizona. Journal of the Cincinnati. Soc Nat Hist 22:4–13

    Google Scholar 

  • Eisenhauer N, Bonn A, Guerra CA (2019) Recognizing the quiet extinction of invertebrates. Nat Commun 10(1):1–3

    Article  Google Scholar 

  • Etges WJ (2019) Evolutionary genomics of host plant adaptation: Insights from Drosophila. Curr Opin Insect Sci 36:96–102

    Article  Google Scholar 

  • Faeth SH, Bultman TL (2002) Endophytic fungi and interactions among host plants, herbivores and natural enemies. In: Tscharntke T, Hawkins BA (eds) Multitrophic level interactions. Cambridge University Press, Cambridge, pp 89–123

    Chapter  Google Scholar 

  • Ferro ML, Nguyen NH, Tishechkin A, Park JS, Bayless V, Carlton CE (2013) Coleoptera collected from rotting fishhook barrel cacti (Ferocactus wislizeni (Engelm.) Britton and Rose), with a review of Nearctic Coleoptera associated with succulent necrosis. Coleopterists Bull 67(4):419–443

    Article  Google Scholar 

  • Fleming TH, Valiente-Banuet A (2002) Columnar cacti and their mutualists: evolution, ecology, and conservation. University of Arizona Press, Tucson

    Google Scholar 

  • Fogleman JC, Danielson PB (2001) Chemical interactions in the cactus-microorganism-Drosophila model system of the Sonoran Desert. Ame Zool 41(4):877–889

    CAS  Google Scholar 

  • Goettsch B, Hilton-Taylor C, Cruz-Piñón G, Duffy JP, Frances A, Hernández HM et al (2015) High proportion of cactus species threatened with extinction. Nat Plants 1(10):1–7

    Article  Google Scholar 

  • Gorostiague P, Sajama J, Ortega-Baes P (2018) Will climate change cause spatial mismatch between plants and their pollinators? A test using Andean cactus species. Biol Conserv 226:247–255

    Article  Google Scholar 

  • Goulet H, Huber JT (1993) Hymenoptera of the world: and identification guide to families. Research Branch Agriculture Canada, Québec

    Google Scholar 

  • Hasson E, De Panis D, Hurtado J, Mensch J (2019) Host plant adaptation in cactophilic species of the Drosophila buzzatii cluster: fitness and transcriptomics. J Hered 110(1):46–57

    Article  CAS  Google Scholar 

  • Hernández Triana LM, Prosser SW, Rodríguez-Perez MA, Chaverri LG, Hebert PDN, Gregory T (2014) Recovery of DNA barcodes from blackfly museum specimens (Diptera: Simuliidae) using primer sets that target a variety of sequence lengths. Mol Ecol Res 14(3):508–518

    Article  Google Scholar 

  • Hoang K, Matzkin LM, Bono JM (2015) Transcriptional variation associated with cactus host plant adaptation in Drosophila mettleri populations. Mol Ecol 24(20):5186–5199

    Article  Google Scholar 

  • Hubbard HG (1899) Insect fauna of the giant cactus of Arizona: letters from the Southwest. Psyche 8 (Suppl. I; annotated by Schwarz EA): 1–14

  • Hsieh TC, Ma KH, Chao A (2016) iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol 7(12):1451–1456

    Article  Google Scholar 

  • Ivanova NV, Dewaard JR, Hebert PDN (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol Ecol Notes 6:998–1002

    Article  CAS  Google Scholar 

  • Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD et al (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26(11):1463–1464

    Article  CAS  Google Scholar 

  • Kembel SW, Hubbell SP (2006) The phylogenetic structure of a neotropical forest tree community. Ecology 87(7):S86–S99

    Article  Google Scholar 

  • Kiesling R (1978) El género Trichocereus (Cactaceae): I: Las especies de la Rep. Argentina. Darwiniana 21(2/4):263–330

    Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549

    Article  CAS  Google Scholar 

  • Lang M, Murat S, Clark AG, Gouppil G, Blais C, Matzkin LM et al (2012) Mutations in the neverland gene turned Drosophila pachea into an obligate specialist species. Science 337(6102):1658–1661

    Article  CAS  Google Scholar 

  • Letunic I, Bork P (2019) Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47(1):256–259

    Article  Google Scholar 

  • Losos JB (2008) Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol Lett 11(10):995–1003

    Article  Google Scholar 

  • Luebert F (2021) The two South American dry diagonals. Front Biogeogr 13(4):10. https://doi.org/10.21425/F5FBG51267

    Article  Google Scholar 

  • Mahnert V, DiIorio O, Turienzo P, Porta A (2011) Pseudoscorpions (Arachnida) from Argentina. New records of distributions and habitats, corrections and an identification key. Zootaxa 2881(1):1–30

    Article  Google Scholar 

  • Maldonado F, Salinas de Salmuni G, Maraz J, Puigdengolas C (1997) Aplicación de imagenes ERS-1 al estudio de la degradación de tierras en el gran bajo oriental de Valle Fértil, San Juan, Argentina. Europ Space Agency Publ 405:77–82

    Google Scholar 

  • Markow TA (2019) Ecological and evolutionary genomics: the cactophilic Drosophila model system. J Hered 10(1):1–3

    Article  Google Scholar 

  • Martínez-Falcón AP, Marcos-García MA, Moreno CE, Rotheray GE (2012) A critical role for Copestylum larvae (Diptera, Syrphidae) in the decomposition of cactus forests. J Arid Environ 78:41–48

    Article  Google Scholar 

  • Mauseth JD, Kiesling R, Ostolaza C (2002) A cactus odyssey: journeys in the wilds of Bolivia, Peru, and Argentina. Timberpress, Portland

    Google Scholar 

  • Mejia D (2016) Rove Beetle (Coleoptera: Staphylinidae) Diversity, Distribution, and Ecology in the Sonoran Desert Necrotic Cactus Niche. Dissertation, University of California, San Diego

  • Meyer JM, Fogleman JC (1987) Signifcance of saguaro cactus alkaloids in ecology of Drosophila mettleri, a soil-breeding, cactophilic drosophilid. J Chem Ecol 13(11):2069–2081

    Article  CAS  Google Scholar 

  • Minor Almazán, VH (2015) Sucesión heterotrófica en Neobuxbaumia tetetzo (Cactaceae) dentro del jardín botánico Helia Bravo Hollis, Zapotitlán Salinas, Puebla. Dissertation, Benemérita Universidad Autónoma De Puebla, Mejico

  • Mongiardino Koch NM, Soto IM, Galvagno M, Hasson E, Iannone L (2015) Biodiversity of cactophilic microorganisms in western Argentina: community structure and species composition in the necroses of two sympatric cactus hosts. Fungal Ecol 13:167–180

    Article  Google Scholar 

  • Mouchet MA, Villeger S, Mason NWH, Mouillot D (2010) Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Funct Ecol 24:867–876

    Article  Google Scholar 

  • Núñez Bustos E (2015) Catálogo revisado y actualizado de Sphingidae de Argentina, con seis nuevos registros (Lepidoptera: Sphingidae). SHILAP Rev Lepidopterol 43(172):615–631

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, et al (2013) Package ‘vegan’. Community ecology package, versión 2(9):1–295

  • Oliveira DC, Almeida FC, O’Grady PM, Armella MA, DeSalle R, Etges WJ (2012) Monophyly, divergence times, and evolution of host plant use inferred from a revised phylogeny of the Drosophila repleta species group. Mol Phylogenet Evol 64(3):533–544

    Article  Google Scholar 

  • Ortega-Baes P, Saravia M, Sühring S, Godínez-Alvarez H, Zamar M (2011) Reproductive biology of Echinopsis terscheckii (Cactaceae): the role of nocturnal and diurnal pollinators. Plant Biol 13:33–40

    Article  Google Scholar 

  • Ortega-Baes, P. & Lowry, M. 2017. Echinopsis terscheckii (amended version of 2013 assessment). The IUCN Red List of Threatened Species 2017: e.T152300A121467806. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T152300A121467806.en. Downloaded on 03 August 2021.

  • Padró J, Soto IM (2013) Exploration of the nutritional profile of Trichocereus terscheckii (Parmentier) Britton & Rose stems. J Prof Assoc Cactus Dev 15:1–12

    Google Scholar 

  • Padró J, Carreira V, Corio C, Hasson E, Soto IM (2014) Host alkaloids differentially affect developmental stability and wing vein canalization in cactophilic Drosophila buzzatii. J Evol Biol 27(12):2781–2797

    Article  Google Scholar 

  • Padró J, De Panis DN, Vrdoljak J, Carmona PM, Colines B, Hasson E, Soto IM (2018) Experimental evolution of alkaloid tolerance in sibling Drosophila species with different degrees of specialization. Evol Biol 45(2):170–181

    Article  Google Scholar 

  • Padró J, Vrdoljak J, Carmona PM, Soto IM (2019) Divergent patterns of correlated evolution in primary and secondary sexual traits of cactophilic Drosophila. Evol Ecol 33(1):71–87

    Article  Google Scholar 

  • Padró J, De Panis DN, Luisi P et al (2022) Ortholog genes from cactophilic Drosophila provide insight into human adaptation to hallucinogenic cacti. Sci Rep 12(1):1–15

    Article  Google Scholar 

  • Peco B, Borghi CE, Malo JE, Acebes P, Almirón M, Campos CM (2011) Effects of bark damage by feral herbivores on columnar cactus Echinopsis (= Trichocereus) terscheckii reproductive output. J Arid Environ 75(11):981–985

    Article  Google Scholar 

  • Pfeiler E, Bitler BG, Castrezana S, Matzkin LM, Markow TA (2009) Genetic diversification and demographic history of the cactophilic pseudoscorpion Dinocheirus arizonensis from the Sonoran Desert. Mol Phylogenet Evol 52(1):133–141

    Article  CAS  Google Scholar 

  • Pfeiler E, Markow TA (2011) Phylogeography of the cactophilic Drosophila and other arthropods associated with cactus necroses in the Sonoran Desert. Insects 2(2):218–231

    Article  Google Scholar 

  • Pfeiler E, Johnson S, Richmond MP, Markow TA (2013) Population genetics and phylogenetic relationships of beetles (Coleoptera: Histeridae and Staphylinidae) from the Sonoran Desert associated with rotting columnar cacti. Mol Phylogenet Evol 69(3):491–501

    Article  Google Scholar 

  • Puillandre N, Lambert A, Brouillet S, Achaz GJME (2012) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol Ecol 21(8):1864–1877

    Article  CAS  Google Scholar 

  • Puillandre N, Brouillet S, Achaz G (2021) ASAP: assemble species by automatic partitioning. Mol Ecol Res 21(2):609–620

    Article  Google Scholar 

  • Quipildor VB, Mathiasen P, Premoli AC (2017) Population genetic structure of the giant cactus Echinopsis terscheckii in northwestern Argentina is shaped by patterns of vegetation cover. J Hered 108(5):469–478

    Article  Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing (2016). R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Biology 67(5):901

    CAS  Google Scholar 

  • Ratnasingham S, Hebert PDN (2007) BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Mol Ecol Notes 7:355–364

  • Ratnasingham S, Hebert PD (2013) A DNA-based registry for all animal species: the Barcode Index Number (BIN) system. PLoS ONE 8(7):e66213

    Article  CAS  Google Scholar 

  • Reese EM, Swanson AP (2017) A review of the cactophilic Carcinops Marseul (Coleoptera: Histeridae) of the Sonoran Desert Region, with descriptions of six new species. Coleopt Bull 71(1):159–190

    Article  Google Scholar 

  • Roig-Juñent S, Domínguez MC, Flores GE, Mattoni C (2006) Biogeographic history of South American arid lands: a view from its arthropods using TASS analysis. J Arid Eviron 66(3):404–420

    Article  Google Scholar 

  • Roig-Juñent S, Claps LE, Morrone JJ (2014) Biodiversidad de artrópodos argentinos. Editorial Sociedad Entomológica Argentina, Mendoza

    Google Scholar 

  • Rotheray GE (2019) Saprophagy, developing on decay. In: Rotheray GE (ed) Ecomorphology of cyclorrhaphan larvae (diptera). Springer, Cham, pp 141–173

    Chapter  Google Scholar 

  • Saint Esteven A, Benedictto M, Garolla FA, Padró J, Soto IM (2021) A survey of cacti richness in a biodiversity hotspot of Western Argentina. Bradleya 39:5–15

    Google Scholar 

  • Schliep KP (2011) phangorn: phylogenetic analysis in R. Bioinformatics 27(4):592–593

    Article  CAS  Google Scholar 

  • Soto EM, Mongiardino Koch N, Milla Carmona P, Soto IM, Hasson E (2017) Cactus–fungi interactions mediate host preference in cactophilic Drosophila (Diptera: Drosophilidae). Biol J Linn Soc 122(3):539–548

    Article  Google Scholar 

  • Soto EM, Padró J, Milla Carmona P, Tuero DT, Carreira VP, Soto IM (2018) Pupal emergence pattern in cactophilic Drosophila and the effect of host plants. Insect Sci 25(6):1108–1118

    Article  Google Scholar 

  • Schlumpberger BO, Renner SS (2012) Molecular phylogenetics of Echinopsis (Cactaceae): polyphyly at all levels and convergent evolution of pollination modes and growth forms. Am J Bot 99(8):1335–1349

    Article  Google Scholar 

  • Torres-Silva G, Schnadelbach AS, Bezerra HB, Lima-Brito A, Resende SV (2021) In vitro conservation and genetic diversity of threatened species of Melocactus (Cactaceae). Biodivers Conserv 30(4):1067–1080

    Article  Google Scholar 

  • Valentini A, Pompanon F, Taberlet P (2009) DNA barcoding for ecologists. Trends Ecol Evol 24(2):110–117

    Article  Google Scholar 

  • Vanderplank SE, Ezcurra E, Biogeography D, Pulses R (2020) Desert rarity, endemism and uniqueness. In: Goldstein MI, Della Sala DA (eds) Encyclopedia of the world’s biomes. Elsevier, Amsterdam, pp 47–56

    Chapter  Google Scholar 

  • Wagner DL, Grames EM, Forister ML, Berenbaum MR, Stopak D (2021) Insect decline in the anthropocene: death by a thousand cuts. PNAS 118(2):e2023989118

    Article  CAS  Google Scholar 

  • Whitford WG (2000) Keystone arthropods as webmasters in desert ecosystems. In: Coleman DC, Hendrix PF (eds) Invertebrates as webmasters in ecosystems. CABI Publishing, New York, pp 25–42

    Chapter  Google Scholar 

  • Wilson JJ (2012) DNA barcodes for insects. In: Kress WJ, Erickson DL (eds) DNA barcodes: methods and protocols. Springer, Cham, pp 17–46

    Chapter  Google Scholar 

  • Zeh DW, Zeh JA (1992) Failed predation or transportation? Causes and consequences of phoretic behavior in the pseudoscorpion Dinocheirus arizonensis (Pseudoscorpionida: Chernetidae). J Insect Behav 5(1):37–49

    Article  Google Scholar 

  • Zhang SQ, Che LH, Li Y, Liang D, Pang H, Ślipiński A, Zhang P (2018) Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. Nat Commun 9(1):1–11

    Google Scholar 

Download references

Acknowledgements

We thank Agustina Lopez, Nicolas Flaibani, Jose Crespo, María Gonzalez, Juan Vrdoljak, Mariana Benedictto, Pedro Fontanarrosa and Diego De Panis for their invaluable support during field work. This research was supported by the National Council of Scientific and Technical Research of Argentina (CONICET), funded by The International Barcode of Life Project (Fondo iBOL Argentina 2012), The Rufford Foundation (Grant No. 13701-1), the National Agency of Scientific and Technological Promotion (PICT 2017-0220) and the University of Buenos Aires (UBACyT2018 Mod I 20020170100342).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julián Padró.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by Jan C Habel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 252 kb)

Supplementary file2 (XLSX 78 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padró, J., Saint Esteven, A. & Soto, I.M. DNA barcodes reveal the hidden arthropod diversity in a threatened cactus forest of the central Andes. Biodivers Conserv 32, 567–587 (2023). https://doi.org/10.1007/s10531-022-02513-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-022-02513-7

Keywords

Navigation