Skip to main content

Advertisement

Log in

Identifying high priority conservation areas for Patagonian wetlands biodiversity

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Given the multiple stressors affecting freshwater ecosystems and the limited resources devoted to their management, effective conservation of freshwater biodiversity requires regional prioritization. Patagonian wetlands are essential for regional biodiversity and the economy, but they are still far from reaching global conservation targets and many of them could disappear due to climate change. Our study aimed at prioritizing wetlands based on aquatic and terrestrial biodiversity, their conservation status and vulnerability to climate change. First, we identified 43 priority wetlands containing all aquatic biodiversity collected in 82 Patagonian wetlands located over a 1500 km north–south gradient, by using the software Marxan. Then, we ranked within priority wetlands according to their conservation status (low priority if they were already protected; medium priority if not), importance for terrestrial biodiversity conservation (high priority) and vulnerability to climate change. Highly ranked priority wetlands in National Parks (low priority), contained diverse wetlands (57% aquatic taxon richness), including a large proportion of rare species (33%). High priority wetlands are oases of water in an arid and semiarid steppe, containing not only a large proportion of the aquatic biodiversity, but also acting as a refuge for terrestrial flora and fauna. Different management actions are proposed according to wetland priority level (e.g. fencing, creation of artificial ponds), and since 20% of medium priority and 36% of high priority wetlands are expected to disappear by 2050, their inclusion in conservation or restoration plans needs to be carefully evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abell R, Lehner B, Thieme M, Linke S (2017) Looking beyond the fenceline: assessing protection gaps for the world’s rivers. Conserv Lett 10:383–393

    Article  Google Scholar 

  • Andrade L (2013) La mirada sociológica sobre la desertificación en la meseta central santacruceña (Patagonia austral, Argentina). Zonas Áridas 15:402–417

    Google Scholar 

  • Ball IR, Possingham HP, Watts ME (2009) Marxan and relatives: software for spatial conservation prioritization. In: Moilanen A, Wilson K, Possingham H (eds) Spatial conservation prioritization: quantitative methods and computational tools. Oxford University Press, Oxford, pp 185–189

    Google Scholar 

  • Ballari SA, Valenzuela AEJ, Nuñez MA (2020) Interactions between wild boar and cattle in Patagonian temperate forest : cattle impacts are worse when alone than with wild boar. Biol Invasions. https://doi.org/10.1007/s10530-020-02212-w

    Article  Google Scholar 

  • Barros VR, Boninsegna JA, Camilloni IA, Chidiak M, Magrín GO, Rusticucci M (2015) Climate change in Argentina: trends, projections, impacts and adaptation. Wiley Interdiscip Rev Clim Chang 6:151–169

    Article  Google Scholar 

  • Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143. https://doi.org/10.1111/j.1466-8238.2009.00490.x

    Article  Google Scholar 

  • Baselga A, Orme D, Villeger S, et al (2018) betapart: Partitioning beta diversity into turnover and nestedness components. 42

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Batzer DP, Boix D (2016) Invertebrates in freshwater wetlands. An international perspective on their ecology. Springer International Publishing, London

    Book  Google Scholar 

  • Brinson MM, Malvárez AI (2002) Temperate freshwater wetlands: types, status, and threats. Environ Conserv 29:115–133. https://doi.org/10.1017/S0376892902000085

    Article  Google Scholar 

  • Bruner AG, Gullison RE, Rice RE, Da Fonseca GAB (2001) Effectiveness of parks in protecting tropical biodiversity. Science 291:125–128

    Article  CAS  Google Scholar 

  • Burkart R, Bárbaro N, Sanchez R, Gómez D (1999) Ecorregiones de la Argentina. APN-PRODIA.

  • Calhoun AJK, Mushet DM, Bell KP, Boix D, Fitzsimons JA, Isselin-Nondedeu F (2017) Temporary wetlands: challenges and solutions to conserving a “disappearing” ecosystem. Biol Conserv 211:3–11

    Article  Google Scholar 

  • Cantonati M, Poikane S, Pringle CM et al (2020) Natural and artificial freshwater environments: consequences for biodiversity conservation. Water 12:1–85. https://doi.org/10.3390/w12010260

    Article  Google Scholar 

  • Cañedo-Argüelles M, Hermoso V, Herrera-Grao T, Barquín J, Bonada N (2019) Freshwater conservation planning informed and validated by public participation: the Ebro catchment, Spain, as a case study. Aquat Conserv 29:1253–1267

    Article  Google Scholar 

  • Chehébar C, Novaro A, Iglesias G, Walker S, Funes M, Tammone M, Didier K (2013) Identificación de áreas de importancia para la biodiversidad en la estepa y el monte de Patagonia. ErreGe y Asociados imprenta.

  • Ciari G (2009) Funcionamiento hidrológico de los mallines y sus cuencas asociadas. Carpeta Técnica, Medio Ambiente No 13. Carpeta Técnica, Medio Ambiente 13:1–5

    Google Scholar 

  • Collen B, Whitton F, Dyer EE, Baillie JEM, Cumberlidge N, Darwall WRT, Pollock C, Richman NI, Soulsby AM, Böhm M (2014) Global patterns of freshwater species diversity, threat and endemism. Global Ecol Biogeogr 23:40–51

    Article  Google Scholar 

  • Crego RD, Nielsen CK, Didier KA (2013) Climate change and conservation implications for wet meadows in dry Patagonia. Environ Conserv 41:122–131

    Article  Google Scholar 

  • Crego RD, Didier KA, Nielsen CK (2014) Modeling meadow distribution for conservation action in arid and semi-arid Patagonia, Argentina. J Arid Environ 102:68–75

    Article  Google Scholar 

  • Davidson NC (2014) How much wetland has the world lost? long-term and recent trends in global wetland area. Mar Freshw Res 65:934–941. https://doi.org/10.1071/MF14173

    Article  Google Scholar 

  • Declerck S, De Bie T, Ercken D et al (2006) Ecological characteristics of small farmland ponds: associations with land use practices at multiple spatial scales. Biol Conserv 131:523–532. https://doi.org/10.1016/j.biocon.2006.02.024

    Article  Google Scholar 

  • Epele LB, Miserendino ML (2015) Environmental quality and aquatic invertebrate metrics relationships at Patagonian wetlands subjected to livestock grazing pressures. PLoS One 10:e0137873

    Article  Google Scholar 

  • Epele LB, Miserendino ML (2016) Temporal dynamics of invertebrate and aquatic plant communities at three intermittent ponds in livestock grazed Patagonian wetlands grazed Patagonian wetlands. J Nat Hist 50:711–730. https://doi.org/10.1080/00222933.2015.1062930

    Article  Google Scholar 

  • Epele LB, Manzo LM, Grech MG, Macchi P, Claverie AÑ, Lagomarsino L, Miserendino ML (2018) Disentangling natural and anthropogenic influences on Patagonian pond water quality. Sci Total Environ 613–614:866–876

    Article  Google Scholar 

  • Epele LB, Brand C, Miserendino ML (2019) Ecological drivers of alpha and beta diversity of freshwater invertebrates in arid and semiarid Patagonia (Argentina). Sci Total Environ 678:62–73. https://doi.org/10.1016/j.scitotenv.2019.04.392

    Article  CAS  PubMed  Google Scholar 

  • Erwin KL (2009) Wetlands and global climate change: The role of wetland restoration in a changing world. Wetl Ecol Manag 17:71–84. https://doi.org/10.1007/s11273-008-9119-1

    Article  Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  • Finlayson CM, Arthington AH, Pittock J (2018) Freshwater ecosystems in protected areas: conservation and management. Routledge, New York

    Book  Google Scholar 

  • Game ET, Grantham HS (2008) Marxan User Manual: For Marxan version 1.8.10. University of Queensland, St. Lucia, Queensland, Australia, and Pacific Marine Analysis and Research Association, Vancouver, BC, Canada.

  • García-Llorente M, Harrison PA, Berry P et al (2018) What can conservation strategies learn from the ecosystem services approach? insights from ecosystem assessments in two Spanish protected areas. Biodivers Conserv 27:1575–1597. https://doi.org/10.1007/s10531-016-1152-4

    Article  Google Scholar 

  • Grech MG, Manzo LM, Epele LB et al (2019) Mosquito (Diptera: Culicidae) larval ecology in natural habitats in the cold temperate Patagonia region of Argentina. Parasit Vectors. https://doi.org/10.1186/s13071-019-3459-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamada N, Thorp JH, Rogers DC (2018) Keys to neotropical hexapoda, 4th edn. Academic Press, London

    Google Scholar 

  • Hermoso V, Linke S, Prenda J, Possingham HP (2011) Addressing longitudinal connectivity in the systematic conservation planning of fresh waters. Freshw Biol 56:57–70. https://doi.org/10.1111/j.1365-2427.2009.02390.x

    Article  Google Scholar 

  • Hermoso V, Kennard MJ, Linke S (2012) Integrating multidirectional connectivity requirements in systematic conservation planning for freshwater systems. Divers Distrib 18:448–458. https://doi.org/10.1111/j.1472-4642.2011.00879.x

    Article  Google Scholar 

  • Huang J, Yu H, Guan X et al (2016) Accelerated dryland expansion under climate change. Nat Clim Chang 6:166–171. https://doi.org/10.1038/nclimate2837

    Article  Google Scholar 

  • IPBES (2019) Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Brondizio ES, Settele J, Díaz S, Ngo HT (eds) IPBES Secretariat, Bonn, Germany.

  • IUCN (2019) The IUCN red list of threatened species. Version 2019-2. Available from http://www.iucnredlist.org. Accessed May 2019.

  • Junk WJ (2013) Current state of knowledge regarding South America wetlands and their future under global climate change. Aquat Sci 75:113–131. https://doi.org/10.1007/s00027-012-0253-8

    Article  Google Scholar 

  • Junk WJ, An S, Finlayson CM et al (2013) Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquat Sci 75:151–167. https://doi.org/10.1007/s00027-012-0278-z

    Article  CAS  Google Scholar 

  • Keddy PA, Fraser LH, Solomeshch AI, Junk WJ, Campbell R, Arroyo MTK, Alho CJR (2009) Wet and wonderful: the world’s largest wetlands are conservation priorities. Bioscience 59:39–51

    Article  Google Scholar 

  • Kosman E, Burgio KR, Presley SJ et al (2019) Conservation prioritization based on trait-based metrics illustrated with global parrot distributions. Divers Distrib 25:1156–1165. https://doi.org/10.1111/ddi.12923

    Article  Google Scholar 

  • Kutschker AM, Epele LB, Miserendino ML (2014) Aquatic plant composition and environmental relationships in grazed Northwest Patagonian wetlands, Argentina. Ecol Eng 64:37–48. https://doi.org/10.1016/j.ecoleng.2013.12.007

    Article  Google Scholar 

  • Lanzas M, Hermoso V, Bota G, Brotons L (2019) Designing a network of green infrastructure to enhance the conservation value of protected areas and maintain ecosystem services. Sci Total Environ 651:541–550. https://doi.org/10.1016/j.scitotenv.2018.09.164

    Article  CAS  PubMed  Google Scholar 

  • Leroy B (2016) Rarity: Calculation of rarity indices for species and assemblages of species. 1–15.

  • Leroy B, Petillon J, Gallon R et al (2012) Improving occurrence-based rarity metrics in conservation studies by including multiple rarity cut-off points. Insect Conserv Divers 5:159–168. https://doi.org/10.1111/j.1752-4598.2011.00148.x

    Article  Google Scholar 

  • Linke S, Hermoso V, Januchowski-Hartley S (2019) Toward process-based conservation prioritizations for freshwater ecosystems. Aquat Conserv 29:1149–1160

    Article  Google Scholar 

  • Liu U, Kenney S, Breman E, Cossu TA (2019) A multicriteria decision making approach to prioritise vascular plants for species-based conservation. Biol Conserv 234:221–240

    Article  Google Scholar 

  • Maiorano L, Amori G, Montemaggiori A, Rondinini C, Santini L, Saura S, Boitani L (2015) On how much biodiversity is covered in Europe by national protected areas and by the Natura 2000 network: Insights from terrestrial vertebrates. Conserv Biol 29:986–995

    Article  CAS  Google Scholar 

  • Maleki S, Soffianian AR, Koupaei SS et al (2018) Wetland restoration prioritizing, a tool to reduce negative effects of drought; An application of multicriteria-spatial decision support system (MC-SDSS). Ecol Eng 112:132–139. https://doi.org/10.1016/j.ecoleng.2017.12.031

    Article  Google Scholar 

  • Manzo LM, Epele LB, Grech MG et al (2019) Wetland genesis rules invertebrate spatial patterns at Patagonian ponds (Santa Cruz, Argentina): A multiscale perspective. Ecol Eng 126:43–54. https://doi.org/10.1016/j.ecoleng.2018.10.026

    Article  Google Scholar 

  • Markovic D, Carrizo SF, Kärcher O et al (2017) Vulnerability of European freshwater catchments to climate change. Glob Chang Biol 23:3567–3580. https://doi.org/10.1111/gcb.13657

    Article  PubMed  Google Scholar 

  • Martín CE, Chehébar C (2001) The national parks of Argentinian Patagonia — management policies for conservation, public use, rural settlements, and indigenous communities. J R Soc New Zeal 31:845–864. https://doi.org/10.1080/03014223.2001.9517680

    Article  Google Scholar 

  • Mazzoni E, Rabassa J (2018) Volcanic landscapes and associated wetlands of lowland Patagonia. Springer International Publishing AG, Cham

    Book  Google Scholar 

  • Mitsch WJ, Bernal B, Nahlik AM et al (2013) Wetlands, carbon, and climate change. Landsc Ecol 28:583–597. https://doi.org/10.1007/s10980-012-9758-8

    Article  Google Scholar 

  • Moffett A, Sarkar S (2006) Incorporating multiple criteria into the design of conservation area networks: a minireview with recommendations. Divers Distrib 12:125–137. https://doi.org/10.1111/j.1366-9516.2005.00202.x

    Article  Google Scholar 

  • Monahan WB, Theobald DM (2018) Climate change adaptation benefits of potential conservation partnerships. PLoS One 13:e0191468

    Article  Google Scholar 

  • Morea JP (2014) Situación actual de la gestión de las áreas protegidas de la Argentina. Problemáticas actuales y tendencias futuras. Revista Universitaria de Geografía 23:57–75

    Google Scholar 

  • Nabte MJ, Marino AI, Rodríguez MV, Monjeau A, Saba SL (2013) Range management affects native ungulate populations in Península Valdés, a World Natural Heritage. PLoS One 8:e55655

    Article  CAS  Google Scholar 

  • Naidoo R, Balmford A, Ferraro PJ et al (2006) Integrating economic costs into conservation planning. Trends Ecol Evol 21:681–687. https://doi.org/10.1016/j.tree.2006.10.003

    Article  PubMed  Google Scholar 

  • Nel JL, Roux DJ, Abell R, Ashton PJ, Cowling RM, Higgins JV, Thieme M, Viers JH (2009) Progress and challenges in freshwater conservation planning. Aquat Conserv 19:127–133

    Article  Google Scholar 

  • Newbold T, Bennett DJ, Choimes A et al (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50. https://doi.org/10.1038/nature14324

    Article  CAS  PubMed  Google Scholar 

  • Oertli B, Ilg C, Angélibert S et al (2014) Freshwater biodiversity under warming pressure in the alps: a methodological framework for prioritization of restoration areas for small waterbodies. Eco mont 6:23–34. https://doi.org/10.1553/ecomont-6-1s23

    Article  Google Scholar 

  • Perotti MG, Diéguez MC, Jara FG (2005) Estado del conocimiento de humedales del norte patagónico (Argentina): aspectos relevantes e importancia para la conservación de la biodiversidad regional. Rev Chil Hist Nat 78:723–737

    Article  Google Scholar 

  • Pittock J, Finlayson CM (2011) Australia’s Murray-Darling Basin: Freshwater ecosystem conservation options in an era of climate change. Mar Freshw Res 62:232–243. https://doi.org/10.1071/MF09319

    Article  CAS  Google Scholar 

  • Qu Y, Sun G, Luo C et al (2019) Identify ingrestoration priorities for wetlands based on historical distributions of biodiversity features and restoration suitability. J Environ Manage 231:1222–1231. https://doi.org/10.1016/j.jenvman.2018.10.057

    Article  PubMed  Google Scholar 

  • R Development Core Team (2019) R: a language and environment for statistical computing. R Version 3.5.3. R Foundation for Statistical Computing, Vienna, Austria. Available from http://www.R-project.org/.

  • Rains M, Leibowitz S, Cohen M et al (2016) Geographically isolated wetlands are part of the hydrological landscape. Hydrol Process 160:153–160. https://doi.org/10.1002/hyp.10635

    Article  Google Scholar 

  • Ramsar Convention on Wetlands (2018) Global Wetland Outlook: State of the World’s Wetlands and their Services to People. Ramsar Convention Secretariat, Gland

  • Reside AE, Adams VM (2018) Adapting systematic conservation planning for climate change. Biodivers Conserv 27:1–29. https://doi.org/10.1007/s10531-017-1442-5

    Article  Google Scholar 

  • Reis V, Hermoso V, Hamilton SK et al (2017) A global assessment of inland wetland conservation status. Bioscience 67:523–533. https://doi.org/10.1093/biosci/bix045

    Article  Google Scholar 

  • Reid AJ, Carlson AK, Creed IF et al (2019) Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol Rev 94:849–873. https://doi.org/10.1111/brv.12480

    Article  PubMed  Google Scholar 

  • Richman NI et al (2015) Multiple drivers of decline in the global status of freshwater crayfish (Decapoda: Astacidea). Philos Trans R Soc B Biol Sci 370:20140060

    Article  Google Scholar 

  • Rodríguez JP, Keith DA, Rodriguez-Clark KM et al (2015) A practical guide to the application of the IUCN Red List of Ecosystems criteria. Philos Trans R Soc B Biol Sci 370:20140003

    Article  Google Scholar 

  • Rose D, Bell D, Crook DA (2016) Restoring habitat and cultural practice in Australia’s oldest and largest traditional aquaculture system. Rev Fish Biol Fish 26:589–600. https://doi.org/10.1007/s11160-016-9426-1

    Article  Google Scholar 

  • Song XP, Hansen MC, Stehman SV, Potapov PV, Tyukavina A, Vermote EF, Townshend JR (2018) Global land change from 1982 to 2016. Nature 560:639–643

    Article  CAS  Google Scholar 

  • Stewart DR, Underwood ZE, Rahel FJ, Walters AW (2018) The effectiveness of surrogate taxa to conserve freshwater biodiversity. Conserv Biol 32:183–194

    Article  Google Scholar 

  • Vila AR, Borrelli L (2011) Forest ecology and management cattle in the Patagonian forests: feeding ecology in Los Alerces National Reserve. For Ecol Manage 261:1306–1314. https://doi.org/10.1016/j.foreco.2011.01.009

    Article  Google Scholar 

  • Watson JEM, Grantham HS, Wilson KA, Possingham HP (2011) Systematic conservation planning: past, present and future. In: Ladle RJ, Whittaker RJ (eds) Conservation biogeography. Wiley, Chichester, pp 136–160

    Chapter  Google Scholar 

  • Watson JEM, Dudley N, Segan DB, Hockings M (2014) The performance and potential of protected areas. Nature 515:67–73

    Article  CAS  Google Scholar 

  • Werner EE, Skelly DK, Relyea RA, Yurewicz KL (2007) Amphibian species richness across environmental gradients. Oikos 116:1697–1712

    Article  Google Scholar 

  • Whitehead PG, Wilby RL, Battarbee RW et al (2009) A review of the potential impacts of climate change on surface water quality. Hydrol Sci J 54:101–123. https://doi.org/10.1623/hysj.54.1.101

    Article  Google Scholar 

  • Williams DD (2006) The biology of temporary waters. Oxford University Press, New York

    Google Scholar 

  • Wilson KA, McBride MF, Bode M, Possingham HP (2006) Prioritizing global conservation efforts. Nature 440:337–340

    Article  CAS  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

We thank M Archangelsky, C Brand, G Ciari, AÑ Claverie, CY Di Prinzio, M Grech, W Opazo, V Nakamatsu, N Nakamura, and R Suarez for assistance in the field and lab work. We are grateful to RD Crego and C Chehébar for providing terrestrial biodiversity and climate change scenarios data. We also thank the National Parks and Provinces administrations for sampling permits. M. Archangelsky, C. Brand, B.S. Gullo, M. Marchese, S. Mazzucconi and P. Pessacq helped in the taxonomic identification of some invertebrates. We are grateful to two anonymous reviewers for their contribution to the peer review of this manuscript. This work was partially supported by the project R/8, No. 108/2013 UNPSJB. LBE, LMM, MGG, and MLM were funded by CONICET. LBE was also funded by Fundación Carolina. This is Scientific Contribution no. 152 from LIESA. VH was supported by a Ramón y Cajal contract funded by the Spanish Ministry of Science and Innovation (RYC-2013-13979).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis B. Epele.

Additional information

Communicated by Angus Jackson.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Epele, L.B., Grech, M.G., Manzo, L.M. et al. Identifying high priority conservation areas for Patagonian wetlands biodiversity. Biodivers Conserv 30, 1359–1374 (2021). https://doi.org/10.1007/s10531-021-02146-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-021-02146-2

Keywords

Navigation