Skip to main content

Advertisement

Log in

Human activities associated with reduced Komodo dragon habitat use and range loss on Flores

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Species restricted to archipelagos are often range-restricted, dispersal limited, and persist as disjunct populations. These attributes can make island populations especially vulnerable to extinction from natural or anthropogenic processes. Ascertaining causes of habitat use, population impact, and range loss is fundamental to guiding effective conservation actions. The Komodo dragon (Varanus komodoensis) is an endangered, island-endemic species with a highly restricted range distribution limited to a small number of islands in Eastern Indonesia. Flores Island is the largest island (13,540 km2) within the species distribution. However, with relatively few and small-protected areas, alongside a much higher incidence of human-related habitat use, Komodo dragon habitat occupancy is suspected to decrease on Flores. Here over five years, we conducted systematic surveys to evaluate Komodo dragon habitat occupancy at 346 camera monitoring stations (CMS) distributed along the Flores coastline. We successfully detected Komodo dragons at 85 of the 346 CMS on Flores. The pattern of Komodo dragon site presence indicated their distribution was confined to three isolated and highly restricted habitat areas on the west, northwestern, and northern coastal regions of Flores. Ranking of competing models indicated that proximity to farms and villages had the strongest negative effects on Komodo dragon habitat occupancy. The current predicted Komodo dragon range distribution appeared to have undergone significant range area contraction (~ 44%) at multiple coastal areas known to be occupied by the Komodo dragon detected in previous decades (i.e., 1970–2000). We attribute decreased Komodo dragon habitat use and range loss to multiple and cascading human activities. To address these threats, we advocate a range of land use planning and community conservation actions to avoid a potential Komodo dragon extirpation on the largest island habitat within their distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data will be deposited in a public database on acceptance of the article.

References

  • Adams W (2004) Against extinction: the story of conservation. Earthscan, London

    Google Scholar 

  • Adams WM et al (2004) Biodiversity conservation and the eradication of poverty. Science 306:1146–1149

    Article  CAS  PubMed  Google Scholar 

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x

    Article  Google Scholar 

  • Anson JR, Dickman CR, Boonstra R, Jessop TS (2013) Stress triangle: do introduced predators exert indirect costs on native predators and prey? PLoS ONE 8:e60916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anson JR, Dickman CR, Handasyde K, Jessop TS (2014) Effects of multiple disturbance processes on arboreal vertebrates in eastern Australia: implications for management. Ecography 37:357–366

    Article  Google Scholar 

  • Ariefiandy A, Purwandana D, Seno A, Ciofi C, Jessop TS (2013) Can camera traps monitor Komodo dragons a large ectothermic predator? PLoS ONE 8:e58800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ariefiandy A, Purwandana D, Seno A, Chrismiawati M, Ciofi C, Jessop TS (2014) Evaluation of three field monitoring-density estimation protocols and their relevance to Komodo dragon conservation. Biodivers Conserv 23:2473–2490. https://doi.org/10.1007/s10531-014-0733-3

    Article  Google Scholar 

  • Ariefiandy A, Purwandana D, Natali C, Imansyah M, Surahman M, Jessop T, Ciofi C (2015) Conservation of Komodo dragons Varanus komodoensis in the Wae Wuul nature reserve, Flores, Indonesia: a multidisciplinary approach. Int Zoo Yearb 49:67–80

    Article  Google Scholar 

  • Ariefiandy A, Purwandana D, Ciofi C, Jessop TS (2020) Komodo Survival Program: an NGO’s approach to assisting Komodo Dragon conservation and management. In: Walls SC, O’Donnell KM (eds) Strategies for conservation success in herpetology. Society for the Study of Amphibians and Reptiles, University Heights, OH, USA., pp xx–xx

    Google Scholar 

  • Auffenberg W (1981) The behavioural ecology of the Komodo monitor. Florida University Press, Gainesville

    Google Scholar 

  • Blackburn TM, Cassey P, Duncan RP, Evans KL, Gaston KJ (2004) Avian extinction and mammalian introductions on oceanic islands. Science 305:1955–1958

    Article  CAS  PubMed  Google Scholar 

  • Boivin NL et al (2016) Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc Natl Acad Sci USA 113:6388–6396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Soc Methods Res 33:261–304. https://doi.org/10.1177/0049124104268644

    Article  Google Scholar 

  • Cardillo M et al (2005) Evolution: multiple causes of high extinction risk in large mammal species. Science 309:1239–1241. https://doi.org/10.1126/science.1116030

    Article  CAS  PubMed  Google Scholar 

  • Cardillo M, Purvis A, Sechrest W, Gittleman JL, Bielby J, Mace GM (2004) Human population density and extinction risk in the world’s carnivores. PLoS Biol 2:e197. https://doi.org/10.1371/journal.pbio.0020197

    Article  PubMed  PubMed Central  Google Scholar 

  • Cardillo M, MacE GM, Gittleman JL, Jones KE, Bielby J, Purvis A (2008) The predictability of extinction: biological and external correlates of decline in mammals. Proc R Soc B 275:1441–1448. https://doi.org/10.1098/rspb.2008.0179

    Article  PubMed  PubMed Central  Google Scholar 

  • Ceballos G, Ehrlich PR, Dirzo R (2017) Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc Natl Acad Sci USA 114:E6089–E6096. https://doi.org/10.1073/pnas.1704949114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciofi C (2002) Conservation genetics of Komodo dragon Komodo dragons biology and conservation (Zoo and aquarium biology and conservation series)

  • Ciofi C, Bruford MW (1999) Genetic structure and gene flow among Komodo dragon populations inferred by microsatellite loci analysis. Mol Ecol 8:S17–S30. https://doi.org/10.1046/j.1365-294X.1999.00734.x

    Article  CAS  PubMed  Google Scholar 

  • Ciofi C, De Boer ME (2004) Distribution and conservation of the Komodo monitor (Varanus komodoensis). Herpetol J 14:99–107

    Google Scholar 

  • Ciofi C, Gibson R (2006a) Research report: a survey on the distribution and status of the Komodo monitor Varanus komodoensis in eastern Flores (Lesser Sundas, Indonesia). Zoological Society of London, London

    Google Scholar 

  • Ciofi C, Gibson R (2006b) A survey on the distribution of and status of the Komodo monitor Varanus komodoensis in eastern Flores (Lesser Sundas, Indonesia). Zoological Society London, London

    Google Scholar 

  • Ciofi C, Beaumont MA, Swingland IR, Bruford MW (1999) Genetic divergence and units for conservation in the Komodo dragon Varanus komodoensis. Proc Roy Soc B 266:2269–2274

    Article  Google Scholar 

  • Dickman AJ, Macdonald EA, Macdonald DW (2011) A review of financial instruments to pay for predator conservation and encourage human–carnivore coexistence. Proc Natl Acad Sci 108:13937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • du Preez BD, Loveridge AJ, Macdonald DW (2014) To bait or not to bait: a comparison of camera-trapping methods for estimating leopard Panthera pardus density. Biol Conserv 176:153–161

    Article  Google Scholar 

  • Emerton L, Bishop J, Thomas L (2006) Sustainable financing of protected areas: a global review of challenges and options. vol 13. IUCN,

  • Estes JA et al (2011) Trophic downgrading of planet earth. Science 333:301–306. https://doi.org/10.1126/science.1205106

    Article  CAS  PubMed  Google Scholar 

  • Farris ZJ et al (2017) Threats to a rainforest carnivore community: a multi-year assessment of occupancy and co-occurrence in Madagascar. Biol Conserv 210:116–124. https://doi.org/10.1016/j.biocon.2017.04.010

    Article  Google Scholar 

  • Fiske IJ, Chandler RB (2011) Unmarked an R package for fitting hierarchical models of wildlife occurrence and abundance. J Stat Softw 43:1–23. https://doi.org/10.18637/jss.v043.i10

    Article  Google Scholar 

  • Forth G (2010) Folk knowledge and distribution of the Komodo dragon (Varanus komodoensis) on Flores island. J Ethnobiol 30:289–307

    Article  Google Scholar 

  • Fox J (1998) Land-use and land-cover change in Nusa Tenggara Timur, Indonesia. In: ACIAR PROCEEDINGS, 1999. ACIAR, pp 32–38

  • Frankham R (1998) Inbreeding and extinction: Island populations. Conserv Biol 12:665–675. https://doi.org/10.1111/j.1523-1739.1998.96456.x

    Article  Google Scholar 

  • Gittleman JL, Harvey PH (1982) Carnivore home-range size, metabolic needs and ecology. Behav Ecol Sociobiol 10:57–63

    Article  Google Scholar 

  • Graham K, Beckerman AP, Thirgood S (2005) Human–predator–prey conflicts: ecological correlates, prey losses and patterns of management. Biol Conserv 122:159–171

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction. Springer, New York

    Book  Google Scholar 

  • Hazzah L, Mulder MB, Frank L (2009) Lions and warriors: social factors underlying declining African lion populations and the effect of incentive-based management in Kenya. Biol Conserv 142:2428–2437

    Article  Google Scholar 

  • Hearn AJ et al (2018) Evaluating scenarios of landscape change for Sunda clouded leopard connectivity in a human dominated landscape. Biol Conserv 222:232–240. https://doi.org/10.1016/j.biocon.2018.04.016

    Article  Google Scholar 

  • Hijmans RJ, Phillips S, Leathwick J, Elith J, Hijmans MRJ (2017) Package ‘dismo.’ Circles 9:1–68

    Google Scholar 

  • Hilborn R et al (2006) Effective enforcement in a conservation area. Science 314:1266–1266

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Gillespie G, Jessop TS (2019) Variable reptile responses to introduced predator control in southern Australia. Wildl Res 46:64–75

    Article  Google Scholar 

  • Jackson HB, Fahrig L (2012) What size is a biologically relevant landscape? Landsc Ecol 27:929–941

    Article  Google Scholar 

  • Jessop TS et al (2007) Island differences in population size structure and catch per unit effort and their conservation implications for Komodo dragons. Biol Conserv 135:247–255. https://doi.org/10.1016/j.biocon.2006.10.025

    Article  Google Scholar 

  • Jessop TS et al (2018) Exploring mechanisms and origins of reduced dispersal in island Komodo dragons. Proc R Soc B 285:20181829

    Article  PubMed  PubMed Central  Google Scholar 

  • Jessop TS et al (2020) Komodo dragons are not ecological analogs of apex mammalian predators. Ecology 101:e02970

    Article  PubMed  Google Scholar 

  • Jessop TS, Kearney MR, Moore JL, Lockwood T, Johnston M (2013) Evaluating and predicting risk to a large reptile (Varanus varius) from feral cat baiting protocols. Biol Invas 15:1653–1663

    Article  Google Scholar 

  • Jones AR et al (2020) Identifying island safe havens to prevent the extinction of the World’s largest lizard from global warming. Ecol Evol 10:10492–10507

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamil PI, Susianto H, Purwandana D, Ariefiandy A (2019) Anthropomorphic and factual approaches in Komodo dragon conservation awareness program for elementary school students: Initial study. Appl Environ Educ Communi 19:225

    Article  Google Scholar 

  • Karanth KU (1995) Estimating tiger Panthera tigris populations from camera-trap data using capture-recapture models. Biol Conserv 71:333–338. https://doi.org/10.1016/0006-3207(94)00057-W

    Article  Google Scholar 

  • Karanth KU, Nichols JD, Kumar NS, Link WA, Hines JE (2004) Tigers and their prey: predicting carnivore densities from prey abundance. Proc Natl Acad Sci USA 101:4854–4858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karimov K, Kachel SM, Hacklander K (2018) Responses of snow leopards, wolves and wild ungulates to livestock grazing in the Zorkul Strictly Protected Area, Tajikistan. PLoS ONE 13:e0208329. https://doi.org/10.1371/journal.pone.0208329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khorozyan I, Ghoddousi A, Soofi M, Waltert M (2015) Big cats kill more livestock when wild prey reaches a minimum threshold. Biol Conserv 192:268–275

    Article  Google Scholar 

  • Lee TM, Jetz W (2011) Unravelling the structure of species extinction risk for predictive conservation science. Proc R Soc B 278:1329–1338

    Article  PubMed  Google Scholar 

  • Letnic M, Ritchie EG, Dickman CR (2012) Top predators as biodiversity regulators: the dingo Canis lupus dingo as a case study. Biol Rev 87:390–413

    Article  PubMed  Google Scholar 

  • Macdonald DW et al (2018) Multi-scale habitat selection modeling identifies threats and conservation opportunities for the Sunda clouded leopard (Neofelis diardi). Biol Conserv 227:92–103. https://doi.org/10.1016/j.biocon.2018.08.027

    Article  Google Scholar 

  • MacKenzie DI, Bailey LL (2004) Assessing the fit of site-occupancy models. J Agric Biol Environ Stat 9:300–318

    Article  Google Scholar 

  • MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255. https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2

    Article  Google Scholar 

  • MacKenzie D, Nichols J, Royle J, Pollock K, Bailey L, Hines J (2006) Occupancy estimation and modelling Academic Press. Burlington, Massachusetts

    Google Scholar 

  • Monk K, De Fretes Y, Reksodihaljo-Lilley G (1997) The ecology of Nusa Tenggara and Maluku. The ecology of Indonesia series, vol V. Oxford Univ. Press, London

    Google Scholar 

  • Morris DW (1987) Ecological scale and habitat use. Ecology 68:362–369

    Article  Google Scholar 

  • Ouwens P (1912) On a large Varanus species from the island of Komodo. Bulletin du Jardin botanique de Buitenzorg 6:1–3

    Google Scholar 

  • Penjor U, Tan CKW, Wangdi S, Macdonald DW (2019) Understanding the environmental and anthropogenic correlates of tiger presence in a montane conservation landscape. Biol Conserv 238:108196. https://doi.org/10.1016/j.biocon.2019.108196

    Article  Google Scholar 

  • Procter JB (1928) On a living Komodo Dragon Varanus komodoensis Ouwens, exhibited at the Scientific Meeting, October 23, 1928. In: Proceedings of the Zoological Society of London, vol 4. Wiley Online Library, pp 1017–1019

  • Purvis A, Gittleman JL, Cowlishaw G, Mace GM (2000) Predicting extinction risk in declining species. Proc R Soc Lond B 267:1947–1952

    Article  CAS  Google Scholar 

  • Purwandana D et al (2014) Demographic status of Komodo dragons populations in Komodo National Park. Biol Conserv 171:29–35. https://doi.org/10.1016/j.biocon.2014.01.017

    Article  Google Scholar 

  • Purwandana D (2015) Evaluating environmental, demographic and genetic effects on population-level survival in an island endemic. Ecography. https://doi.org/10.1111/ecog.01300

    Article  Google Scholar 

  • Purwandana D et al (2016) Ecological allometries and niche use dynamics across Komodo dragon ontogeny. Sci Nat 103:27

    Article  Google Scholar 

  • Rayan DM, Linkie M (2016) Managing conservation flagship species in competition: tiger, leopard and dhole in Malaysia. Biol Conserv 204:360–366. https://doi.org/10.1016/j.biocon.2016.11.009

    Article  Google Scholar 

  • Ripple WJ et al (2014) Status and ecological effects of the world’s largest carnivores. Science 343:1241484

    Article  PubMed  Google Scholar 

  • Sastrawan P, Ciofi C (2002) Population distribution and home range. In: Murphy JB, Ciofi C, de la Panouse C, Walsh T (eds) Komodo Dragons: biology and conservation. Zoo and aquarium biology and conservation series. Smithsonian Books, Washinton, DC, p 324

    Google Scholar 

  • Tan CKW et al (2017) Habitat use and predicted range for the mainland clouded leopard Neofelis nebulosa in Peninsular Malaysia. Biol Conserv 206:65–74. https://doi.org/10.1016/j.biocon.2016.12.012

    Article  Google Scholar 

  • Team RC (2013) R: a language and environment for statistical computing

  • Traill LW, Brook BW, Frankham RR, Bradshaw CJ (2010) Pragmatic population viability targets in a rapidly changing world. Biol Conserv 143:28–34

    Article  Google Scholar 

  • Treves A, Karanth KU (2003) Human-carnivore conflict and perspectives on carnivore management worldwide. Conserv Biol 17:1491–1499

    Article  Google Scholar 

  • van den Bergh GD et al (2009) The Liang Bua faunal remains: a 95k.yr. sequence from Flores, East Indonesia. J Hum Evol 57:527–537. https://doi.org/10.1016/j.jhevol.2008.08.015

    Article  PubMed  Google Scholar 

  • Wang SW, Macdonald DW (2009) The use of camera traps for estimating tiger and leopard populations in the high altitude mountains of Bhutan. Biol Conserv 142:606–613. https://doi.org/10.1016/j.biocon.2008.11.023

    Article  Google Scholar 

  • Wilson MC et al (2016) Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landsc Ecol 31:219–227

    Article  Google Scholar 

  • Wilson KA, Westphal MI, Possingham HP, Elith J (2005) Sensitivity of conservation planning to different approaches to using predicted species distribution data. Biol Conserv 122:99–112

    Article  Google Scholar 

  • Woodroffe R (2000) Predators and people: using human densities to interpret declines of large carnivores. In: Animal conservation forum, vol 2. Cambridge University Press, pp 165–173

  • Woodroffe R, Thirgood S, Rabinowitz A (2005) The impact of human-wildlife conflict on natural systems. Conservation biology series-Cambridge 9:1

Download references

Acknowledgements

We are grateful to the Directorate General of Conservation of Natural Resources and Ecosystem (DITJEN KSDAE) and Eastern Lesser Sunda Central Bureau for Conservation of Natural Resources (BBKSDA NTT) for issuing research permits and the BBKSDA NTT authority and members of staff and local community volunteers for support and their enthusiastic involvement in the project. Funding for fieldwork (2014-2019) was provided through members of the European Association of Zoos and Aquaria, Chester Zoo, and the Ocean Park Conservation Foundation Hong Kong.

Funding

Funding for fieldwork (2014–2019) was provided through members of the European Association of Zoos and Aquaria, Chester Zoo, and the Ocean Park Conservation Foundation Hong Kong.

Author information

Authors and Affiliations

Authors

Contributions

AA, DP, CC, and TSJ concivied the study. AA, DP, MA, SAN, and JM provided field data. TSJ, analysed the data. TSJ wrote the manuscript. All authors commented on drafts of the manuscript.

Corresponding author

Correspondence to Achmad Ariefiandy.

Ethics declarations

Conflict of interest

There are no conflicts or competing interests.

Ethics approval

This study was approved under a cooperative research agreement between the Komodo Survival Program, Eastern Lesser Sunda Central Bureau for Conservation of Natural Resources (BBKSDA NTT), and the Directorate General of Conservation of Natural Resources and Ecosystem (DITJEN KSDAE) Indonesian Ministry of Environtment and Forestry under permits (PKS.49/K.5/TU/KSA/8/2017 and PKS.06/KSP/2017). These permits approve animal ethics and welfare to research Komodo dragons, alongside permission to conduct research on Flores.

Informed consent

All authors agree to participate in this study. All authors agree to participate in this publication.

Additional information

Communicated by Dirk Sven Schmeller.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ariefiandy, A., Purwandana, D., Azmi, M. et al. Human activities associated with reduced Komodo dragon habitat use and range loss on Flores. Biodivers Conserv 30, 461–479 (2021). https://doi.org/10.1007/s10531-020-02100-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-020-02100-8

Keywords

Navigation