Skip to main content

Advertisement

Log in

Lichens in old-growth and managed mountain spruce forests in the Czech Republic: assessment of biodiversity, functional traits and bioindicators

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Natural spruce forests are restricted to the highest mountain ranges in the Czech Republic. Spruce is also the commonest tree species in managed forests. Owing to a massive decline of spruce forests in Central Europe, caused by recent climatic fluctuations and disturbances, the lichen diversity and species composition was compared between ten representative natural mountain old-growth forests in the Czech Republic and their counterparts in mature managed forests. The old-growth forests are characterized by a higher species richness, abundance, number of Red-listed species, functional, taxonomic and phylogenetic diversities. Plots with the highest species richness are situated in the Šumava Mountains, an area with a relatively low sulphur deposition in the past. Bioindication analysis searching for lichen indicators supported several species (e.g. Xylographa vitiligo, Chaenotheca sphaerocephala) and genera (e.g. Calicium, Xylographa) with a strong preference for old-growth forests. Analysis of lichen functional traits revealed a higher abundance of species with a vegetative reproduction in managed forests that may be explained by a higher efficiency in colonization by young successional stages. Lichens with stalked apothecia, pigmented ascospores and large ascospores are more frequent in old-growth forests. Our results are briefly discussed in terms of nature conservation, focusing on national refugees of old-growth forest species, biodiversity hot-spots, practical use of indicator species and representative measures for an evaluation of forest quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aptroot A, van Herk CM (2006) Further evidence of the effects of global warming on lichens, particularly those with a Trentepholia phycobiont. Environ Pollut 146:293–298

    Article  PubMed  CAS  Google Scholar 

  • Ardelean IV, Keller C, Scheidegger C (2015) Effects of management on lichen species richness, ecological traits and community structure in the Rodnei Mountains National Park (Romania). PLoS ONE. https://doi.org/10.1371/journal.pone.0145808

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey RH (1976) Ecological aspects of dispersal and establishment in lichens. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic Press, London, pp 215–247

    Google Scholar 

  • Barkman JJ (1958) Phytosociology and ecology of cryptogamic epiphytes. Van Gorcum, Assen

    Google Scholar 

  • Bässler C, Cadotte MW, Beudert B, Heibl C, Blaschke M, Bradtka JH, Langbehn T, Werth S, Müller J (2016) Contrasting patterns of lichen functional diversity and species richness across an elevation gradient. Ecography 39:689–698

    Article  Google Scholar 

  • Bazalová D, Botková K, Hegedüšová K, Májeková J, Medvecká J, Šibíková M, Škodová I, Zaliberová M, Jarolímek I (2018) Twin plots—appropriate method to assess the impact of alien tree on understorey? Hacquetia 17:163–169

    Article  Google Scholar 

  • Bengtsson J, Nilsson SG, Franc A, Menozzi P (2000) Biodiversity, disturbances, ecosystem function and management of European forests. For Ecol Manage 132:39–50

    Article  Google Scholar 

  • Benítez A, Aragón G, González Y, Prieto M (2018) Functional traits of epiphytic lichens in response to forest disturbance and as predictors of total richness and diversity. Ecol Indic 86:18–26

    Article  Google Scholar 

  • Boch S, Prati D, Hessenmöller D, Schulze ED, Fischer M (2013) Richness of lichen species, especially of threatened ones, is promoted by management methods furthering stand continuity. PLoS ONE. https://doi.org/10.1371/journal.pone.0055461

    Article  PubMed  PubMed Central  Google Scholar 

  • Botta-Dukát Z (2005) Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J Veg Sci 16:533–540

    Article  Google Scholar 

  • Bowler PA, Rundel PW (1975) Reproductive strategies in lichens. Bot J Linn Soc 70:325–340

    Article  Google Scholar 

  • Bradtka J, Bässler C, Müller J (2010) Baumbewohnende Flechten als Zeiger für Prozessschutz und ökologische Kontinuität im Nationalpark Bayerischer Wald. Waldökologie, Landschaftsforschung und Naturschutz 9:49–63

    Google Scholar 

  • Brockerhoff EG, Barbaro L, Castagneyrol B et al (2017) Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers Conserv 26:3005–3035

    Article  Google Scholar 

  • Brooks TM, Mittermeier RA, da Fonseca GAB, Gerlach J, Hoffmann J, Lamoreux JF, Mittermeier CG, Pilgrim JD, Rodrigues ASL (2006) Global biodiversity conservation priorities. Science 313:58–61

    Article  CAS  PubMed  Google Scholar 

  • Buschbom J, Mueller GM (2006) Testing “species pair” hypotheses: evolutionary processes in the lichen-forming species complex Porpidia flavocoerulescens and Porpidia melinodes. Mol Biol Evol 23:574–586

    Article  CAS  PubMed  Google Scholar 

  • Čada V, Morrissey RC, Michalová Z, Bače R, Janda P, Svoboda M (2016) Frequent severe natural disturbances and non-equilibrium landscape dynamics shaped the mountain spruce forest in central Europe. For Ecol Manage 363:169–178

    Article  Google Scholar 

  • Cameron RP, Bondrup-Nielsen S (2012) Coral lichen (Sphaerophorus globosus (Huds.) Vain) as an indicator of coniferous old-growth forest in Nova Scotia. Northeast Nat 19:535–540

    Article  Google Scholar 

  • Caruso A, Rudolphi J, Thor G (2008) Lichen species diversity and substrate amounts in young planted boreal forests: a comparison between slash and stumps of Picea abies. Biol Conserv 141:47–55

    Article  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 175:40–52

    Google Scholar 

  • Chytrý M (2017) Current Vegetation of the Czech Republic. In: Chytrý M, Danihelka J, Kaplan Z, Pyšek P (eds) Flora and vegetation of the Czech Republic. Plant Veg 14:229–338

  • Clarke KR, Warwick RM (1998) A taxonomic distinctness index and its statistical properties. J Appl Ecol 35:523–531

    Article  Google Scholar 

  • Clarke KR, Warwick RM (2001) A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Mar Ecol Prog Ser 216:265–278

    Article  Google Scholar 

  • Conti ME, Cecchetti G (2001) Biological monitoring: lichens as bioindicators of air pollution assessment—a review. Environ Pollut 114:471–492

    Article  CAS  PubMed  Google Scholar 

  • De Cácerés M, Jansen F (2015) Relationship between species and groups of sites. R package ʻindicspeciesʼ, version 1.7.4

  • Debastini VJ (2018) Analysis of functional and phylogenetic patterns in metacommunities. R package ʼSYNCSAʼ, version 1.3.3

  • Dittrich S, Hauck M, Schweigatz D, Dörfler I, Hühne R, Bade C, Jacob M, Leuschner C (2013) Separating forest continuity from tree age effects on plant diversity in the groundand epiphyte vegetation of a Central European mountain spruce forest. Flora 208:238–246

    Article  Google Scholar 

  • Dittrich S, Jacob M, Bade C, Leuschner C, Hauck M (2014) The significance of deadwood for total bryophyte, lichen, and vascular plant diversity in an old-growth spruce forest. Plant Ecol 215:1123–1137

    Article  Google Scholar 

  • Durrell LW (1964) The composition and structure of walls of dark fungus spores. Mycopathologia 23:339–345

    Google Scholar 

  • Dyderski MK, Paź S, Frelich LE, Jagodziński AM (2017) How much does climate change threaten European forest tree species distributions? Glob Change Biol 24:1150–1163

    Article  Google Scholar 

  • Ellis CJ (2012) Lichen epiphyte diversity: a species, community and trait-based review. Persp Plant Ecol Evol Syst 14:131–152

    Article  Google Scholar 

  • Ellis CJ, Coppins BJ (2006) Contrasting functional traits maintain lichen epiphyte diversity in response to climate and autogenic succession. J Biogeogr 33:1643–1656

    Article  Google Scholar 

  • Ellis CJ, Coppins BJ (2007) Reproductive strategy and the compositional dynamics of crustose lichen communities on aspen (Populus tremula L.) in Scotland. Lichenologist 39:377–391

    Article  Google Scholar 

  • Ertz D, Guzow-Krzemińska B, Thor G, Łubek A, Kukwa M (2018) Photobiont switching causes changes in the reproduction strategy and phenotypic dimorphism in the Arthoniomycetes. Sci Rep. https://doi.org/10.1038/s41598-018-23219-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Esseen PA (2006) Edge influence on the old-growth forest indicator lichen Alectoria sarmentosa in natural ecotones. J Veg Sci 17:185–194

    Google Scholar 

  • Esseen PA, Renhorn KE, Pettersson RB (1996) Epiphytic lichen biomass in managed and old-growth boreal forests: effect of branch quality. Ecol Appl 6:228–238

    Article  Google Scholar 

  • Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10

    Article  Google Scholar 

  • Friedl T, Büdel B (2008) Photobionts. In: Nash TH (ed) Lichen biology. Cambridge University Press, Cambridge, pp 9–26

    Chapter  Google Scholar 

  • Gauslaa Y, Lie M, Ohlson M (2008) Epiphytic lichen biomass in a boreal Norway spruce forest. Lichenologist 40:257–266

    Article  Google Scholar 

  • Giordani P, Brunialti G, Bacaro G, Nascimbene J (2012) Functional traits of epiphytic lichens as potential indicators of environmental conditions in forest ecosystems. Ecol Indic 18:413–420

    Article  Google Scholar 

  • Guttová A, Košuthová A, Barbato D, Paoli L (2017) Functional and morphological traits of epiphytic lichens in the Western Carpathian oak forests reflect the influence of air quality and forest history. Biologia 72:1247–1257

    Article  CAS  Google Scholar 

  • Hafellner J, Komposch H (2007) Diversität epiphytischer Flechten und lichenicoler Pilze in einem mitteleuropäischen Urwaldrest und einem angrenzenden Forst. Herzogia 20:87–113

    Google Scholar 

  • Halonen P, Hyvärinen M, Kauppi M (1991) The epiphytic lichen flora on conifers in relation to climate in the finnish middle boreal subzone. Lichenologist 23:61–72

    Article  Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, Oxford

    Google Scholar 

  • Harper JL, Hawksworth DL (1994) Biodiversity: measurement and estimation. Philos Trans R Soc Lond Ser B 345:5–12

    Article  CAS  Google Scholar 

  • Hedenås H, Ericson L (2000) Epiphytic macrolichens as conservation indicators: successional sequence in Populus tremula stands. Biol Conserv 93:43–53

    Article  Google Scholar 

  • Hedenås H, Bolyukh VO, Jonsson BG (2003) Spatial distribution of epiphytes on Populus tremula in relation to dispersal mode. J Veg Sci 14:233–242

    Article  Google Scholar 

  • Hilmo O, Holien H (2002) Epiphytic lichen response to the edge environment in a boreal Picea abies forest in Central Norway. Bryologist 105:48–56

    Article  Google Scholar 

  • Hilmo O, Såstad SM (2001) Colonization of old-forest lichens in a young and an old boreal Picea abies forest: an experimental approach. Biol Conserv 102:251–259

    Article  Google Scholar 

  • Hilmo O, Holien H, Hytteborn H, Ely-Aalstrup H (2009) Richness of epiphytic lichens in differently aged Picea abies plantations situated in the oceanic region of Central Norway. Lichenologist 41:97–108

    Article  Google Scholar 

  • Hofmeister J, Hošek J, Brabec M et al (2015) Value of old forest attributes related to cryptogam species richness in temperate forests: a quantitative assessment. Ecol Indic 57:497–504

    Article  Google Scholar 

  • Holien H (1996) Influence of site and stand factors on the distribution of crustose lichens of the Caliciales in a suboceanic spruce forest area. Lichenologist 28:315–330

    Article  Google Scholar 

  • Holien H (1997) The lichen flora on Picea abies in a suboceanic spruce forest area in Central Norway with emphasis on the relationship to site and stand parameters. Nordic J Bot 17:55–76

    Article  Google Scholar 

  • Hyvärinen M, Halonen P, Kauppi M (1992) Influence of stand age and structure on the epiphytic lichen vegetation in the middle-boreal forests of Finland. Lichenologist 24:165–180

    Article  Google Scholar 

  • Jahns HM (1988) The establishment, individuality and growth of lichen thalli. Bot J Linn Soc 96:21–29

    Article  Google Scholar 

  • Jirásek J (1996) Společenstva přirozených smrčin České republiky [Natural spruce forest communities in the Czech Republic]. Preslia 67(1995):225–259

    Google Scholar 

  • Johansson P, Rydin H, Thor G (2007) Tree age relationships with epiphytic lichen diversity and lichen life history traits on ash in southern Sweden. Ecoscience 14:81–91

    Article  Google Scholar 

  • Johansson V, Snäll T, Ranius T (2012) Epiphyte metapopulation dynamics are explained by species traits, connectivity and patch dynamics. Ecology 93:235–241

    Article  PubMed  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl Acids Res 30:3059–3066

    Article  CAS  PubMed  Google Scholar 

  • Kembel SW, Ackerly DD, Blomberg P, Cornwell WK, Cowan PD, Helmus MR, Morlon H, Cambell OW (2014) R tools for integrating phylogenesis and ecology. R package ʻpicanteʻ, version 1.6-2

  • Koch NM, Martins SMA, Lucheta F, Müller SC (2013) Functional diversity and traits assembly patterns of lichens as indicators of successional stages in a tropical rain forest. Ecol Indic 34:22–30

    Article  Google Scholar 

  • Kocourková J (2000) Lichenicolous fungi of the Czech Republic. Acta Mus Nat Pragae Ser B Hist Nat 55(1999):59–169

    Google Scholar 

  • Komsta L (2015) Tests for outliers. R-package ʻoutliersʼ, version 0.14

  • Kotwal PC, Kandari LS, Dugaya D (2008) Bioindicators in sustainable management of tropical forests in India. Afr J Plant Sci 2:99–104

    Google Scholar 

  • Krieger DJ (2001) The economic value of forest ecosystem services: a review. The Wilderness Society, Washington

    Google Scholar 

  • Kruys N, Fries C, Jonsson BG, Lämås T, Stål G (1999) Wood-inhabiting cryptogams on dead Norway spruce (Picea abies) trees in managed Swedish boreal forests. Can J Forest Res 29:178–186

    Article  Google Scholar 

  • Kubíková J (1991) Forest dieback in Czechoslovakia. Vegetation 93:101–108

    Article  Google Scholar 

  • Kuldeep S, Prodyut B (2015) Lichen as a bio-indicator tool for assessment of climate and air pollution vulnerability: review. Int Res J Environ Sci 4:107–117

    CAS  Google Scholar 

  • Kuusinen M (1996) Cyanobacterial macrolichens on Populus tremula as indicators of forest continuity in Finland. Biol Conserv 75:43–49

    Article  Google Scholar 

  • Kuusinen M, Siitonen J (1998) Epiphytic lichen diversity in old-growth and managed Picea abies stands in southern Finland. J Veg Sci 9:283–292

    Article  Google Scholar 

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305

    Article  PubMed  Google Scholar 

  • Lelli C, Bruun HH, Chiarucci A, Donati D, Frascaroli F, Fritz Ö, Goldberg I, Nascimbene J, Tøttrup AP, Rahbek C, Heilmann-Clausen J (2019) Biodiversity response to forest structure and management: comparing species richness, conservation relevant species and functional diversity as metrics in forest conservation. For Ecol Manage 432:707–717

    Article  Google Scholar 

  • Li S, Liu WY, Li DW (2013) Bole epiphytic lichens as potential indicators of environmental change in subtropical forest ecosystems in southwest China. Ecol Indic 29:93–104

    Article  Google Scholar 

  • Lie MH, Arup U, Grytnes JA, Ohlson M (2009) The importance of host tree age, size and growth rate as determinants of epiphytic lichen diversity in boreal spruce forests. Biodivers Conserv 18:3579–3596

    Article  Google Scholar 

  • Liira J, Sepp T, Parrest O (2007) The forest structure and ecosystem quality in conditions of anthropogenic disturbance along productivity gradient. For Ecol Manage 250:34–46

    Article  Google Scholar 

  • Liška J, Palice Z (2010) Červený seznam lišejníků České republiky (verze 1.1) [Red List of lichens of the Czech Republic (version 1.1)]. Příroda 29:3–66

    Google Scholar 

  • Liška J, Dětinský R, Palice Z (1996) Importance of the Šumava Mts. for the biodiversity of lichens in the Czech Republic. Silva Gabreta 1:71–81

    Google Scholar 

  • Liška J, Dětinský R, Palice Z (1998) A project on distribution changes of lichens in the Czech Republic. Sauteria 9:351–360

    Google Scholar 

  • Liška J, Palice Z, Dětinský R, Vondrák J (2006) Changes in distribution of rare and threatened lichens in the Czech Republic II. In: Lackovičová A, Guttová A, Lisická E, Lizoň P (eds) Central European lichens—diversity and threat. Mycotaxon Ltd., Ithaca, pp 241–258

    Google Scholar 

  • Löbel S, Snäll T, Rydin H (2006) Species richness patterns and metapopulation processes—evidence from epiphyte communities in boreo-nemoral forests. Ecography 29:169–182

    Article  Google Scholar 

  • Loo JA (2009) The role of forests in the preservation of biodiversity. In: Owens JN, Lund HG (eds) Forests and forest plants. UNESCO and EOLSS Publishers, Paris

    Google Scholar 

  • Łubek A, Kukwa M, Jaroszewicz B, Czortek P (2018) Changes in the epiphytic lichen biota of Białowieża Primeval Forest are not explained by climate warming. Sci Total Environ 643:468–478

    Article  PubMed  CAS  Google Scholar 

  • Lundström J, Jonsson F, Perhans K, Gustafsson L (2013) Lichen species richness on retained aspens increases with time since clear-cutting. For Ecol Manage 293:49–56

    Article  Google Scholar 

  • Malíček J, Berger F, Bouda F, Cezanne R, Eichler M, Halda JP, Langbehn T, Palice Z, Šoun J, Uhlík P, Vondrák J (2017a) Lichens recorded during the Bryological and Lichenological meeting in Mohelno (Třebíč region, southwestern Moravia) in spring 2016. Bryonora 60:24–45

    Google Scholar 

  • Malíček J, Berger F, Palice Z, Vondrák J (2017b) Corticolous sorediate Lecanora species (Lecanoraceae, Ascomycota) containing atranorin in Europe. Lichenologist 49:431–455

    Article  Google Scholar 

  • Malíček J, Palice Z, Vondrák J (2018) Additions and corrections to the lichen biota of the Czech Republic. Herzogia 31:453–475

    Article  Google Scholar 

  • Marini L, Nascimbene J, Nimis PL (2011) Large-scale patterns of epiphytic lichen species richness: photobiont-dependent response to climate and forest structure. Sci Total Environ 409:4381–4386

    Article  CAS  PubMed  Google Scholar 

  • Marmor L, Tõrra T, Saag L, Randlane T (2011) Effects of forest continuity and tree age on epiphytic lichen biota in coniferous forests in Estonia. Ecol Indic 11:1270–1276

    Article  Google Scholar 

  • Marmor L, Tõrra T, Saag L, Randlane T (2012) Species richness of epiphytic lichens in coniferous forests: the effect of canopy openness. Ann Bot Fenn 49:352–358

    Article  Google Scholar 

  • Molnár K, Farkas E (2010) Current results on biological activities of lichen secondary metabolites: a review. Z Naturfors C 65:157–173

    Article  Google Scholar 

  • Mráz K (1959) Příspěvek k poznání původnosti smrku a jedle ve vnitrozemí Čech [Contribution to knowledge of natural occurrence of spruce and fir in inland Bohemia]. Práce Výzkumných ústavů lesnických ČSR 17:135–180

    Google Scholar 

  • Müller J, Bußler H, Goßner M, Rettelbach T, Duelli P (2008) The European spruce bark beetle Ips typographus in a national park: from pest to keystone species. Biodivers Conserv 17:2979–3001

    Article  Google Scholar 

  • Nascimbene J, Marini L (2015) Epiphytic lichen diversity along elevational gradients: biological traits reveal a complex response to water and energy. J Biogeogr 42:1222–1232

    Article  Google Scholar 

  • Nascimbene J, Marini L, Motta R, Nimis PL (2009) Influence of tree age, tree size and crown structure on lichen communities in mature Alpine spruce forests. Biodivers Conserv 18:1509–1522

    Article  Google Scholar 

  • Nascimbene J, Marini L, Nimis PL (2010) Epiphytic lichen diversity in old-growth and managed Picea abies stands in Alpine spruce forests. For Ecol Manage 260:603–609

    Article  Google Scholar 

  • NATURALFORESTS.CZ (2018) Naturalforests.cz, Natural forests of the Czech Republic. http://naturalforests.cz/

  • Nilsson SG, Hedin J, Niklasson M (2001) Biodiversity and its assessment in boreal and nemoral forests. Scand J Forest Res 16(suppl. 3):10–26

    Article  Google Scholar 

  • Nožička J (1957) Přehled vývoje našich lesů [Historical overview of our forests]. Státní zemědělské nakladatelství, Praha

    Google Scholar 

  • Nožička J (1972) Původní výskyt smrku v českých zemích [Original occurrence of spruce in the Bohemian lands]. Státní zemědělské nakladatelství, Praha

    Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) Community ecology package. R-package ʻveganʼ, version 2.5-2

  • Orange A, James PW, White FJ (2010) Microchemical methods for the identification of lichens. British Lichen Society, London

    Google Scholar 

  • Palice Z, Malíček J, Peksa O, Vondrák J (2018) New remarkable records and range extensions in the central European lichen biota. Herzogia 31:518–534

    Article  Google Scholar 

  • Pentecost A (1981) Some observations on the size and shape of lichen ascospores in relation to ecology and taxonomy. New Phytol 89:667–678

    Article  Google Scholar 

  • Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness and community composition. Ecol Lett 5:402–411

    Article  Google Scholar 

  • Petchey OL, Hector A, Gaston KJ (2004) How do different measures of functional diversity perform? Ecology 85:847–857

    Article  Google Scholar 

  • Ponocná T, Spyt B, Kaczka R, Büntgen U, Treml V (2016) Growth trends and climate responses of Norway spruce along elevational gradients in East-Central Europe. Trees 30:1633–1646

    Article  CAS  Google Scholar 

  • Prieto M, Baloch E, Tehler A, Wedin M (2013) Mazaedium evolution in the Ascomycota (Fungi) and the classification of mazaediate groups of formerly unclear relationship. Cladistics 29:296–308

    Article  Google Scholar 

  • Prieto M, Martínez I, Aragón G, Verdú M (2017) Phylogenetic and functional structure of lichen communities under contrasting environmental conditions. J Veg Sci 28:871–881

    Article  Google Scholar 

  • R Core Team (2018) R: A language and environment for statistical computing. The R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rabinowitsch-Jokinen R, Laaka-Lindberg S, Vanha-Majamaa I (2012) Immediate effects of logging, mounding, and removal of logging residues on epixylic species in managed boreal Norway Spruce stands in southern Finland. J Sustain For 31:205–229

    Article  Google Scholar 

  • Rehnstrom A, Free S (1996) The isolation and characterization of melanin-deficient mutants of Monilinia fructicola. Physiol Mol Plant 49:321–330

    Article  Google Scholar 

  • Resl P, Fernández-Mendoza F, Mayrhofer H, Spribille T (2018) The evolution of fungal substrate specificity in a widespread group of crustose lichens. Proc R Soc B. https://doi.org/10.1098/rspb.2018.0640

    Article  PubMed  Google Scholar 

  • Rogers RW (1990) Ecological strategies of lichens. Lichenologist 22:149–162

    Article  Google Scholar 

  • Sætersdal M, Gjerde I, Blom H (2005) Indicator species and the problem of spatial inconsistency in nestedness patterns. Biol Conserv 122:305–316

    Article  Google Scholar 

  • Sanders WB, Lücking R (2002) Reproductive strategies, relichenization and thallus development observed in situ in leaf-dwelling lichen communities. New Phytol 155:425–435

    Article  Google Scholar 

  • Selva SB (1994) Lichen diversity and stand continuity in northern hardwoods and spruce-fir forests of northern New England and western New Brunswick. Bryologist 97:424–429

    Article  Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Article  Google Scholar 

  • Sillett SC, McCune B, Peck JE, Rambo TR, Rutchy A (2000) Dispersal limitations of epiphytic lichens result in species dependent on old-growth forests. Ecol Appl 10:789–799

    Article  Google Scholar 

  • Šmilauer P, Lepš J (2014) Multivariate analysis of ecological data using Canoco 5. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Smith CW, Aptroot A, Coppins BJ, Fletscher A, Gilbert OL, James PW, Wolseley PA (2009) The lichens of Great Britain and Ireland. The British Lichen Society, London

    Google Scholar 

  • Söderström L (1988) Sequence of bryophytes and lichens in relation to substrate variables of decaying coniferous wood in northern Sweden. Nordic J Bot 8:89–97

    Article  Google Scholar 

  • Spathelf P, van der Maaten E, van der Maaten-Theunissen M, Campioli M, Dobrowolska D (2014) Climate change impacts in European forests: the expert views of local observers. Ann For Sci 71:131–137

    Article  Google Scholar 

  • Spies TA (2004) Ecological concepts and diversity of old-growth forests. J For 102:14–20

    Google Scholar 

  • Spribille T, Thor G, Bunnell FL, Goward T, Björk CR (2009) Lichens on dead wood: species-substrate relationships in the epiphytic lichens floras of the Pacific Northwest and Fennoscandia. Ecography 31:741–750

    Article  Google Scholar 

  • Staniaszek-Kik M, Chmura D, Żarnowiec J (2019) What factors influence colonization of lichens, liverworts, mosses and vascular plants on snags? Biologia 74:375–384

    Article  Google Scholar 

  • Stape JL, Binkley D, Jacob WS, Takahashi EN (2006) A twin-plot approach to determine nutrient limitation and potential productivity in Eucalyptus plantations at landscape scales in Brazil. For Ecol Manage 223:358–362

    Article  Google Scholar 

  • Štěpánek P, Zahradníček P, Huth R (2011) Interpolation techniques used for data quality control and calculation of technical series: an example of a Central European daily time series. Idojaras 115:87–98

    Google Scholar 

  • Štěpánek P, Zahradníček P, Farda A (2013) Experiences with data quality control and homogenization of daily records of various meteorological elements in the Czech Republic in the period 1961–2010. Idojaras 117:123–141

    Google Scholar 

  • Stofer S, Bergamini A, Aragón G et al (2006) Species richness of lichen functional groups in relation to land use intensity. Lichenologist 38:331–353

    Article  Google Scholar 

  • Strengbom J, Dahlberg A, Larsson A, Lindelöw Å, Sandström J, Widenfalk O, Gustafsson L (2011) Introducing intensively managed spruce plantations in Swedish forest landscapes will impair biodiversity decline. Forests 2:610–630

    Article  Google Scholar 

  • Svensson M, Dahlberg A, Ranius T, Thor G (2013) Occurrence patterns of lichens on stumps in young managed forests. PLoS ONE. https://doi.org/10.1371/journal.pone.0062825

    Article  PubMed  PubMed Central  Google Scholar 

  • Svensson M, Dahlberg A, Ranius T, Thor G (2014) Dead branches on living trees constitute a large part of the deadwood in managed boreal forests, but are not important for wood-dependent lichens. J Veg Sci 25:819–828

    Article  Google Scholar 

  • Svensson M, Johansson V, Dahlberg A, Frisch A, Thor G, Ranius T (2016) The relative importance of stand and dead wood types for wood-dependent lichens in managed boreal forests. Fungal Ecol 20:166–174

    Article  Google Scholar 

  • Svoboda D, Peksa O, Veselá J (2010) Epiphytic lichen diversity in central European oak forests: assessment of the effects of natural environmental factors and human influences. Environ Pollut 158:812–819

    Article  CAS  PubMed  Google Scholar 

  • Szabó P, Kuneš P, Svobodová-Svitavská H, Švarcová MG, Křížová L, Suchánková S, Müllerová J, Hédl R (2017) Using historical ecology to reassess the conservation status of coniferous forests in Central Europe. Conserv Biol 31:150–160

    Article  PubMed  Google Scholar 

  • Thom D, Seidl R (2016) Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol Rev 91:760–781

    Article  PubMed  Google Scholar 

  • Thormann M (2006) Lichens as indicators of forest health in Canada. For Chron 82:335–343

    Article  Google Scholar 

  • Tibell L (1992) Crustose lichens as indicators of forest continuity in boreal coniferous forests. Nordic J Bot 12:427–450

    Article  Google Scholar 

  • Vanneste T, Valdés A, Verheyen K et al (2019) Functional trait variation of forest understorey plant communities across Europe. Basic Appl Ecol 34:1–14

    Article  Google Scholar 

  • Vestreng V, Myhre G, Fagerli H, Reis S, Tarrasón L (2007) Twenty-five years of continuous sulphur dioxide emission reduction in Europe. Atmos Chem Phys 7:3663–3681

    Article  CAS  Google Scholar 

  • Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301

    Article  PubMed  Google Scholar 

  • Vondrák J, Malíček J, Šoun J, Pouska V (2015) Epiphytic lichens of Stužica (E Slovakia) in the context of Central European old-growth forests. Herzogia 28:104–126

    Article  Google Scholar 

  • Vondrák J, Malíček J, Palice Z, Coppins B, Kukwa M, Czarnota P, Sanderson N, Acton A (2016) Methods for obtaining more complete species lists in surveys of lichen biodiversity. Nordic J Bot 34:619–626

    Article  Google Scholar 

  • Vondrák J, Malíček J, Palice Z, Bouda F, Berger F, Sanderson N, Acton A, Pouska V, Kish R (2018) Exploiting hot-spots; effective determination of lichen diversity in a Carpathian virgin forest. PLoS ONE. https://doi.org/10.1371/journal.pone.0203540

    Article  PubMed  PubMed Central  Google Scholar 

  • Vondrák J, Urbanavichus G, Palice Z, Malíček J, Urbanavichene I, Kubásek J, Ellis C (2019) The epiphytic lichen biota of Caucasian virgin forests: a comparator for European conservation. Biodivers Conserv. https://doi.org/10.1007/s10531-019-01818-4

    Article  Google Scholar 

  • Warwick RM, Clarke KR (1995) New ‘biodiversity’ measures reveal a decrease in taxonomic distinctness with increasing stress. Mar Ecol Prog Ser 129:301–305

    Article  Google Scholar 

  • Werth S, Wagner HH, Gugerli F, Holderegger R, Csencsics D, Kalwij JM, Scheidegger C (2006) Quantifying dispersal and establishment limitation in a population of an epiphytic lichen. Ecology 87:2037–2046

    Article  PubMed  Google Scholar 

  • Whittet R, Ellis CJ (2013) Critical tests for lichen indicators of woodland ecological continuity. Biol Conserv 168:19–23

    Article  Google Scholar 

  • Williams L, Ellis CJ (2018) Ecological constraints to ‘old-growth’ lichen indicators: niche specialism or dispersal limitation? Fungal Ecol 34:20–27

    Article  Google Scholar 

  • Wirth V, Hauck M, Schultz M (2013) Die Flechten Deutschlands. Ulmer, Stuttgart

    Google Scholar 

  • Zahner R (1996) How much old growth is enough? In: Davis M (ed) Eastern old-growth forests: Prospects for rediscovery and recovery. Island Press, Washington, DC, pp 344–358

    Google Scholar 

  • Zemanová L, Trotsiuk V, Morrissey RC, Bače R, Mikoláš M, Svoboda M (2017) Old trees as a key source of epiphytic lichen persistence and spatial distribution in mountain Norway spruce forests. Biodivers Conserv 26:1943–1958

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Mark Seaward who kindly revised the English, Martin Adámek who prepared extrapolated climatic data, Filip Oulehle who provided data on sulphur and nitrogen deposition, and Jana Kocourková, Ilona Sommerová and Lucie Zemanová who helped us during the field research. Both anonymous reviewers helped to improve the manuscript. This study was supported by the long-term research development Project RVO 67985939, Grant Project No. 1074416 from the Charles University Grant Agency and the Project EHP-CZ02-OV-1-027-2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Malíček.

Additional information

Communicated by Pradeep Kumar Divakar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Forest and plantation biodiversity.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malíček, J., Palice, Z., Vondrák, J. et al. Lichens in old-growth and managed mountain spruce forests in the Czech Republic: assessment of biodiversity, functional traits and bioindicators. Biodivers Conserv 28, 3497–3528 (2019). https://doi.org/10.1007/s10531-019-01834-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-019-01834-4

Keywords

Navigation