Skip to main content

Advertisement

Log in

Adjacent woodlands rather than habitat connectivity influence grassland plant, carabid and bird assemblages in farmland landscapes

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

One response to biodiversity decline is the definition of ecological networks that extend beyond protected areas and promote connectivity in human-dominated landscapes. In farmland, landscape ecological research has focused more on wooded than open habitat networks. In our study, we assessed the influence of permanent grassland connectivity, described by grassland amount and spatial configuration, on grassland biodiversity. We selected permanent grasslands in livestock farming areas of north-western France, which were sampled for plants, carabids and birds. At two spatial scales we tested the effects of amount and configuration of grasslands, wooded habitats and crops on richness and abundance of total assemblages and species ecological groups. Grassland connectivity had no significant effects on total richness or abundance of any taxonomic group, regardless of habitat affinity or dispersal ability. The amount of wooded habitat and length of wooded edges at the 200 m scale positively influenced forest and generalist animal groups as well as grassland plant species, in particular animal-dispersed species. However, for animal groups such as open habitat carabids or farmland bird specialists, the same wooded habitats negatively influenced richness and abundance at the 500 m scale. The scale and direction of biodiversity responses to landscape context were therefore similar among taxonomic groups, but opposite for habitat affinity groups. We conclude that while grassland connectivity is unlikely to contribute positively to biodiversity, increasing or maintaining wooded elements near grasslands would be a worthwhile conservation goal. However, the requirements of open farmland animal species groups must be considered, for which such action may be deleterious.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen VG, Batello C, Berretta EJ et al (2011) An international terminology for grazing lands and grazing animals. Grass Forage Sci 66:2–28

    Article  Google Scholar 

  • Arnold TW (2010) Uninformative parameters and model selection using Akaike’s information criterion. J Wildl Manag 74:1175–1178

    Article  Google Scholar 

  • Aviron S, Burel F, Baudry J, Schermann N (2005) Carabid assemblages in agricultural landscapes: impacts of habitat features, landscape context at different spatial scales and farming intensity. Agric Ecosyst Environ 108:205–217

    Article  Google Scholar 

  • Aviron S, Poggi S, Varennes Y-D, Lefèvre A (2016) Local landscape heterogeneity affects crop colonization by natural enemies in protected horticultural cropping systems. Agric Ecosyst Environ 227:1–10

    Article  Google Scholar 

  • Barbaro L, van Halder I (2009) Linking bird, carabid beetle and butterfly life-history traits to habitat fragmentation in mosaic landscapes. Ecography 32:321–333

    Article  Google Scholar 

  • Barton K (2016) MuMIn: multi-model Inference. R package version 1.15

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  • Bennett AF (2003) Linkages in the landscape: the role of corridors and connectivity in wildlife conservation. IUCN, Gland

    Book  Google Scholar 

  • Bennett AF, Saunders DA (2010) Habitat fragmentation and landscape change. In: Sodhi NS, Ehrlich PR (eds) Conservation biology for all. Oxford University Press, Oxford, pp 1544–1550

    Google Scholar 

  • Benton TG, Vickery J, Wilson J (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188

    Article  Google Scholar 

  • Besnard AG, Fourcade Y, Secondi J (2016) Measuring difference in edge avoidance in grassland birds: the Corncrake is less sensitive to hedgerow proximity than passerines. J Ornithol 157:515–523. https://doi.org/10.1007/s10336-015-1281-7

    Article  Google Scholar 

  • BETSI (2012) A database for biological and ecological functional traits of soil invertebrates. French Foundation for Biodiversity Research

  • Bibby CJ, Burgess ND, Hill DA, Mustoe SH (2000) Bird census techniques, (2nd edn). Oxford Academic Press

  • Bjornstad ON (2016) ncf: spatial nonparametric covariance functions

  • Boitani L, Falcucci A, Maiorano L, Rondinini C (2007) Ecological networks as conceptual frameworks or operational tools in conservation. Conserv Biol 21:1414–1422. https://doi.org/10.1111/j.1523-1739.2007.00828.x

    Article  PubMed  Google Scholar 

  • Bouche G, Lepage B, Migeot V, Ingrand P (2009) Application of detecting and taking overdispersion into account in Poisson regression model. Rev Dépidemiol Sante Publique 57:285–296

    Article  CAS  Google Scholar 

  • Boussard H, Baudry J (2014) Chloe2012 : a software for landscape pattern analysis. http://www.rennes.inra.fr/sad/Outils-Produits/Outils-informatiques/Chloe

  • Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  • Brückmann SV, Krauss J, Steffan-Dewenter I (2010) Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. J Appl Ecol 47:799–809. https://doi.org/10.1111/j.1365-2664.2010.01828.x

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multi-model inference. A practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Chamberlain D, Fuller R, Bunce R et al (2000) Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. J Appl Ecol 37:771–788. https://doi.org/10.1046/j.1365-2664.2000.00548.x

    Article  Google Scholar 

  • Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783–791

    Article  PubMed  CAS  Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, New York

    Book  Google Scholar 

  • Crooks KR, Sanjayan M (2006) Connectivity conservation. Cambridge University Press, New York

    Book  Google Scholar 

  • Davies ZG, Pullin AS (2007) Are hedgerows effective corridors between fragments of woodland habitat? An evidence-based approach. Landsc Ecol 22:333–351. https://doi.org/10.1007/s10980-006-9064-4

    Article  Google Scholar 

  • Dawideit BA, Phillimore AB, Laube I et al (2009) Ecomorphological predictors of natal dispersal distances in birds. J Anim Ecol 78:388–395. https://doi.org/10.1111/j.1365-2656.2008.01504.x

    Article  PubMed  Google Scholar 

  • Donald PF, Green RE, Heath MF (2001) Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc R Soc Lond B 268:25–29

    Article  Google Scholar 

  • Duflot R, Georges R, Ernoult A et al (2014) Landscape heterogeneity as an ecological filter of species traits. Acta Oecol 56:19–26

    Article  Google Scholar 

  • Duflot R, Aviron S, Ernoult A, Fahrig L, Burel F (2015) Reconsidering the role of ‘semi-natural habitat’ in agricultural landscape biodiversity: a case study. Ecological Research 30:75–83

    Article  Google Scholar 

  • Duflot R, Ernoult A, Burel F, Aviron S (2016) Landscape level processes driving carabid crop assemblage in dynamic farmlands. Popul Ecol 58:265–275. https://doi.org/10.1007/s10144-015-0534-x

    Article  Google Scholar 

  • Ernoult A, Tremauville Y, Cellier D et al (2006) Potential landscape drivers of biodiversity components in a flood plain: past or present patterns? Biol Conserv 127:1–17

    Article  Google Scholar 

  • Faïq C, Fuzeau V, Cahuzac E et al (2013) Les prairies permanentes : evolution des surfaces en France—analyse à travers le Registre Parcellaire Graphique, Commissariat Général au Développement Durable. Ed Bonnet X

  • Filippi-Codaccioni O, Devictor V, Bas Y, Julliard R (2010) Toward more concern for specialisation and less for species diversity in conserving farmland biodiversity. Biol Conserv 143:1493–1500

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP et al (2005) Global consequences of land use. Science 309:570–574

    Article  PubMed  CAS  Google Scholar 

  • Gaston KJ (2008) Biodiversity and extinction: the importance of being common. Prog Phys Geogr 32:73–79. https://doi.org/10.1177/0309133308089499

    Article  Google Scholar 

  • Gaston KJ, Fuller RA (2008) Commonness, population depletion and conservation biology. Trends Ecol Evol 23:14–19. https://doi.org/10.1016/j.tree.2007.11.001

    Article  PubMed  Google Scholar 

  • Gaujour E, Amiaud B, Mignolet C, Plantureux S (2012) Factors and processes affecting plant biodiversity in permanent grasslands: a review. Agron Sustain Dev 32:133–160

    Article  Google Scholar 

  • Gelling M, Macdonald DW, Mathews F (2007) Are hedgerows the route to increased farmland small mammal density? Use of hedgerows in British pastoral habitats. Landsc Ecol 22:1019–1032. https://doi.org/10.1007/s10980-007-9088-4

    Article  Google Scholar 

  • Gil-Tena A, Nabucet J, Mony C et al (2014) Woodland bird response to landscape connectivity in an agriculture-dominated landscape: a functional community approach. Commun Ecol 15:256–268

    Article  Google Scholar 

  • Hanski I (1999) Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos 87:209–219. https://doi.org/10.2307/3546736

    Article  Google Scholar 

  • Hendrickx F, Maelfait JP, Van Wingerden W et al (2007) How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J Appl Ecol 44:340–351

    Article  Google Scholar 

  • Hothorn T, Hornik K, Strobl C, Zeileis A (2013) Party : a laboratory for recursive partytioning. R package version 1.0-10

  • Inger R, Gregory R, Duffy JP et al (2015) Common European birds are declining rapidly while less abundant species’ numbers are rising. Ecol Lett 18:28–36. https://doi.org/10.1111/ele.12387

    Article  PubMed  Google Scholar 

  • Irmler U, Hoernes U (2003) Assignment and evaluation of ground beetle (Coleoptera: Carabidae) assemblages to sites on different scales in a grassland landscape. Biodiver Conserv 12:1405–1419

    Article  Google Scholar 

  • Jackson HB, Fahrig L (2012) What size is a biologically relevant landscape? Landsc Ecol 27:929–941. https://doi.org/10.1007/s10980-012-9757-9

    Article  Google Scholar 

  • Jamoneau A, Sonnier G, Chabrerie O et al (2011) Drivers of plant species assemblages in forest patches among contrasted dynamic agricultural landscapes. J Ecol 99:1152–1161

    Article  Google Scholar 

  • Jiguet F (2010) Les résultats nationaux du programme STOC de 1989 à 2010

  • Jongman RHG, Bouwma IM, Griffioen A et al (2011) The pan European ecological network: PEEN. Landsc Ecol 26:311–326. https://doi.org/10.1007/s10980-010-9567-x

    Article  Google Scholar 

  • Julve P (1998) BaseVeg. Répertoire synonymique des groupements végétaux de France

  • Kotze DJ, O’Hara RB (2003) Species decline—but why? Explanations of carabid beetle (Coleoptera, Carabidae) declines in Europe. Oecologia 135:138–148

    Article  PubMed  Google Scholar 

  • Kuhn I, Durka W, Klotz S (2004) BiolFlor—a new plant-trait database as a tool for plant invasion ecology. Divers Distrib 10:363–365

    Article  Google Scholar 

  • Lafage D, Maugenest S, Bouzillé J-B, Pétillon J (2015) Disentangling the influence of local and landscape factors on alpha and beta diversities: opposite response of plants and ground-dwelling arthropods in wet meadows. Ecol Res 30:1025–1035. https://doi.org/10.1007/s11284-015-1304-0

    Article  Google Scholar 

  • Laube I, Korntheuer H, Schwager M et al (2013) Towards a more mechanistic understanding of traits and range sizes. Glob Ecol Biogeogr 22:233–241. https://doi.org/10.1111/j.1466-8238.2012.00798.x

    Article  Google Scholar 

  • Liira J, Schmidt T, Aavik T et al (2008) Plant functional group composition and large-scale species richness in European agricultural landscapes. J Veg Sci 19:3–14

    Article  Google Scholar 

  • Marchadour B (2014) Oiseaux nicheurs des Pays de la Loire. Coordination régionale LPO Pays de la Loire. Delachaux et Niestlé, Paris

    Google Scholar 

  • Marini L, Fontana P, Scotton M, Klimek S (2008) Vascular plant and Orthoptera diversity in relation to grassland management and landscape composition in the European Alps. J Appl Ecol 45:361–370

    Article  Google Scholar 

  • Mauremooto JR, Wratten SD, Worner SP, Fry GLA (1995) Permeability of Hedgerows to predatory carabid beetles. Agric Ecosyst Environ 52:141–148

    Article  Google Scholar 

  • Meeus JHA (1993) The transformation of agricultural landscapes in Western-Europe. Sci Total Environ 129:171–190

    Article  Google Scholar 

  • Millan-Pena N, Butet A, Delettre Y et al (2003) Landscape context and carabid beetles (Coleoptera: Carabidae) communities of hedgerows in western France. Agric Ecosyst Environ 94:59–72

    Article  Google Scholar 

  • Neumann JL, Griffiths GH, Hoodless A, Holloway GJ (2016) The compositional and configurational heterogeneity of matrix habitats shape woodland carabid communities in wooded-agricultural landscapes. Landsc Ecol 31:301–315. https://doi.org/10.1007/s10980-015-0244-y

    Article  Google Scholar 

  • Öckinger E, Lindborg R, Sjödin NE, Bommarco R (2012) Landscape matrix modifies richness of plants and insects in grassland fragments. Ecography 35:259–267. https://doi.org/10.1111/j.1600-0587.2011.06870.x

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2013) Vegan: community ecology package

  • Petit S (1994) Diffusion of forest carabid species in hedgerow network landscapes. In: Desender K, Dufrêne M, Loreau M, Luff ML (eds) Carabid beetles: ecology and evolution. Kluwer Academic Publisher, Netherlands, pp 337–443

    Chapter  Google Scholar 

  • Piessens K, Honnay O, Hermy M (2005) The role of fragment area and isolation in the conservation of heathland species. Biol Conserv 122:61–69. https://doi.org/10.1016/j.biocon.2004.05.023

    Article  Google Scholar 

  • Puech C, Baudry J, Joannon A et al (2014) Organic vs. conventional farming dichotomy: does it make sense for natural enemies? Agric Ecosyst Environ 194:48–57. https://doi.org/10.1016/j.agee.2014.05.002

    Article  Google Scholar 

  • Purtauf T, Dauber J, Wolters V (2004) Carabid communities in the spatio-temporal mosaic of a rural landscape. Landsc Urban Plan 67:185–193

    Article  Google Scholar 

  • QGIS Development Team (2015) QGIS geographic information system. Open Source Geospatial Foundation. https://www.qgis.org

  • R Core Team R (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Ribera I, Doledec S, Downie IS, Foster GN (2001) Effect of land disturbance and stress on species traits of ground beetle assemblages. Ecology 82:1112–1129

    Article  Google Scholar 

  • Robinson RA, Sutherland WJ (2002) Post-war changes in arable farming and biodiversity in Great Britain. J Appl Ecol 39:157–176

    Article  Google Scholar 

  • Roger J-L, Jambon O, Bouger G (2010) Clé de détermination des carabidés : Paysages agricoles de la Zone Atelier d’Armorique. Laboratoires INRA SAD-Paysage et CNRS ECOBIO, Rennes

    Google Scholar 

  • Rösch V, Tscharntke T, Scherber C, Batáry P (2013) Landscape composition, connectivity and fragment size drive effects of grassland fragmentation on insect communities. J Appl Ecol 50:387–394. https://doi.org/10.1111/1365-2664.12056

    Article  Google Scholar 

  • Samways MJ, Pryke JS (2016) Large-scale ecological networks do work in an ecologically complex biodiversity hotspot. Ambio 45:161–172. https://doi.org/10.1007/s13280-015-0697-x

    Article  PubMed  Google Scholar 

  • Schneider G, Krauss J, Boetzl FA, Fritze MA, Steffan-Dewenter I (2016) Spillover from adjacent crop and forest habitats shapes carabid beetle assemblages in fragmented semi natural grasslands. Oecologia 182(4):1141–1150. https://doi.org/10.1007/s00442-016-3710-6

    Article  PubMed  Google Scholar 

  • Scrucca L (2004) qcc: an R package for quality control charting and statistical process control. R News 4(1):11–17

    Google Scholar 

  • Smith AC, Koper N, Francis CM, Fahrig L (2009) Confronting collinearity: comparing methods for disentangling the effects of habitat loss and fragmentation. Landsc Ecol 24:1271–1285

    Article  Google Scholar 

  • Smith AC, Fahrig L, Francis CM (2011) Landscape size affects the relative importance of habitat amount, habitat fragmentation, and matrix quality on forest birds. Ecography 34:103–113

    Article  Google Scholar 

  • Soderstrom B, Svensson B, Vessby K, Glimskar A (2001) Plants, insects and birds in semi-natural pastures in relation to local habitat and landscape factors. Biodivers Conserv 10:1839–1863

    Article  Google Scholar 

  • Sotherton NW (1985) The distribution and abundance of predatory coleoptera overwintering in field boundaries. Ann Appl Biol 106:17–21

    Article  Google Scholar 

  • Steffan-Dewenter I (2003) Importance of habitat area and landscape context for species richness of bees and wasps in fragmented Orchard Meadows. Conserv Biol 17:1036–1044. https://doi.org/10.1046/j.1523-1739.2003.01575.x

    Article  Google Scholar 

  • Strobl C, Boulesteix A-L, Kneib T et al (2008) Conditional variable importance for random forests. BMC Bioinform 9:307. https://doi.org/10.1186/1471-2105-9-307

    Article  CAS  Google Scholar 

  • Strobl C, Malley J, Tutz G (2009) An introduction to recursive partitioning: rationale, application and characteristics of classification and regression trees, bagging and random forests. Psychol Methods 14:323–348. https://doi.org/10.1037/a0016973

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas CFG, Parkinson L, Marshall EJP (1998) Isolating the components of activity-density for the carabid beetle Pterostichus melanarius in farmland. Oecologia 116:103–112

    Article  PubMed  CAS  Google Scholar 

  • Thorbek P, Bilde T (2004) Reduced numbers of generalist arthropod predators after crop management. J Appl Ecol 41:526–538

    Article  Google Scholar 

  • Tscharntke T, Tylianakis JM, Rand TA et al (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev 87:661–685

    Article  PubMed  Google Scholar 

  • Vanpeene-Bruhier S, Amsallem J (2014) Schémas régionaux de cohérence écologique : les questionnements, les méthodes d’identification utilisées, les lacunes. Sci Eaux Territ 14:2–5

    Google Scholar 

  • Villemey A, van Halder I, Ouin A et al (2015) Mosaic of grasslands and woodlands is more effective than habitat connectivity to conserve butterflies in French farmland. Biol Conserv 191:206–215. https://doi.org/10.1016/j.biocon.2015.06.030

    Article  Google Scholar 

  • Wamser S, Diekotter T, Boldt L et al (2012) Trait-specific effects of habitat isolation on carabid species richness and community composition in managed grasslands. Insect Conserv Divers 5:9–18

    Article  Google Scholar 

  • Yekwayo I, Pryke JS, Roets F, Samways MJ (2016) Surrounding vegetation matters for arthropods of small, natural patches of indigenous forest. Insect Conserv Divers 9:224–235. https://doi.org/10.1111/icad.12160

    Article  Google Scholar 

Download references

Acknowledgements

We thank Frédéric Vaidie, Vincent Oury, Jean-Luc Roger and Marie Jagaille for assistance with field and laboratory work. We are also grateful to Mathias Templin, Christian Hof, Matthias Schleuning, Irina Nicholas, Katrin Böhning-Gaese for sharing bird measurements used to calculate the dispersal ability predictor. This study was financed by the French Ministry for the Environment (DIVA 3: public policy, agriculture & biodiversity), the Conseil Régional des Pays de la Loire (URBIO: Biodiversity of Urban Areas), and Angers Loire Métropole (post-doctoral grant). The authors thank two anonymous reviewers for their constructive feedbacks on earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémi Duflot.

Additional information

Communicated by David Hawksworth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 732 kb)

Supplementary material 2 (PDF 533 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duflot, R., Daniel, H., Aviron, S. et al. Adjacent woodlands rather than habitat connectivity influence grassland plant, carabid and bird assemblages in farmland landscapes. Biodivers Conserv 27, 1925–1942 (2018). https://doi.org/10.1007/s10531-018-1517-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-018-1517-y

Keywords

Navigation