Skip to main content

Advertisement

Log in

Erosion of insect diversity in response to 7000 years of relative sea-level rise on a small Mediterranean island

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

We have investigated the potential effects of global sea-level rise on Mediterranean coastal wetlands by studying the Coleoptera and pollen fossil remains in a 7000-year sedimentary record, which we obtained from a coastal marshy area on a small Mediterranean island (Cavallo, southern Corsica). Using beetle structural diversity and plant composition as recorded prior to marine and human influences as a ‘past analogue’, we reconstructed the impact of the Holocene relative sea-level rise on the coastal ecosystem. Our results show that beetle species richness and diversity were highest when freshwater was predominant, which was the case until about 6200 years ago. We also found that a major increase in salinity had occurred over the last 5300 years, experiencing a peak rate of increase at about 3700 years ago. These changes are clearly reflected in the fossil records of the following key taxa: halophilous beetles (Ochthebius sp., Pterostichus cursor), halophilous plants (Chenopodiaceae, Tamarix) and non-pollen palynomorphs (microforaminiferal linings). In particular, we note that the majority (60%) of wetland beetle fauna became locally extinct in response to the salinity changes, and these changes were exacerbated by the recent aggravation of human pressures on the island. The major part of this diversity loss occurred 3700 years ago, when the relative Mediterranean sea-level rose above −1.5 ± 0.3 meters. These findings demonstrate the value of fossil beetle assemblage analysis as a diagnostic for the response of coastal wetland biodiversity to past salinity increases, and serve as a means of forecasting the effects of sea-level rise in the future. The conservation of inland freshwater bodies could ultimately prove essential to preserving freshwater insect diversity in threatened coastal environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agostini P (1978) Recherches archéologiques dans l’île Cavallu (Bonifacio, Corse) 1972–1977. Archeol Corsa 3:15–54

    Google Scholar 

  • Ali MM, Mageed AA, Heikal M (2007) Importance of aquatic macrophyte for invertebrate diversity in large subtropical reservoir. Limnollogica 37:155–169. doi:10.1016/j.limno.2006.12.001

    Article  Google Scholar 

  • Anderson NJ, Bugmann H, Dearing JA, Gaillard MJ (2006) Linking palaeoenvironmental data and models to understand the past and to predict the future. Trends Ecol Evol 21:696–704. doi:10.1016/j.tree.2006.09.005

    Article  PubMed  Google Scholar 

  • Andrieu-Ponel V, Ponel P (1999) Human impact on Mediterranean wetland Coleoptera: an historical perspective at Tourves (Var, France). Biodiv Conserv 8:391–407

    Article  Google Scholar 

  • Andrieu-Ponel V, Ponel P, Bruneton H, Leveau P, de Beaulieu JL (2000) Palaeoenvironments and cultural landscapes of the last 2000 years reconstructed from pollen and Coleopteran records in the Lower Rhône Valley, southern France. The Holocene 10:341–355

    Article  Google Scholar 

  • Anthony EJ, Marriner N, Morhange C (2014) Human influence and the changing geomorphology of Mediterranean deltas and coasts over the last 6000 years: from progradation to destruction phase? Earth-Sci Rev 139:336–361. doi:10.1016/j.earscirev.2014.10.003

    Article  Google Scholar 

  • Balachowsky AS (1949) Faune de France 50. Coléoptères Scolitydae. Libr. Fac. Sci, Paris

    Google Scholar 

  • Bellard C, Leclerc C, Courchamps F (2013a) Impact of sea level rise on the 10 insular biodiversity hotspots. Glob Ecol Biogeogr 23:203–212. doi:10.1111/geb.12093

    Article  Google Scholar 

  • Bellard C, Leclerc C, Courchamps F (2013b) Potential impact of sea level rise on the French islands worldwide. Nat Conserv 5:75–86. doi:10.3897/natureconservation.5.5533

    Article  Google Scholar 

  • Beltrame C, Chazée L, Galewski T, Perennou C (2012) Mediterranean wetlands: outlook. First Mediterranean wetlands observatory report—Technical report—2012. Tour du Valat, France

  • Beug HJ (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Friedrich Pfeil, Munich

    Google Scholar 

  • Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518. doi:10.1016/j.quageo.2010.01.002

    Article  Google Scholar 

  • Buckland PI, Buckland PC (2006) BugsCEP Coleopteran ecology package. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series # 2006-116. NOAA/NCDC Paleoclimatology Program, Boulder CO, USA. URL: http://www.bugscep.com

  • Caillol H (1908) Catalogue des Coléoptères de Provence d’après des documents recueillis et groupés, 1er partie. Société des Sciences Naturelles de Provence, Marseille

    Google Scholar 

  • Chambers PA, Lacoul P, Murphy KJ, Thomaz SM (2008) Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595:9–26. doi:10.1007/s10750-007-9154-6

    Article  Google Scholar 

  • Cocquempot C, Rungs C (2009) Liste des Arthropodes terrestres recensés dans les réserves naturelles des îles Cerbicale et Lavezzi (France, Corse-du-Sud). Biocosme Mésogéen 26:1–56

    Google Scholar 

  • Coiffait H (1984) Coléoptères Staphylinides de la région paléartique occidentale, V, Sous famille Paederinae, Tribu Paederini 2, Sous famille Euaesthetinae. Nouv Rev Entomol Suppl 13:1–424

    Google Scholar 

  • Constantin R, Liberti G (2011) Coléoptères Dasytidae de France. Société linnéenne de Lyon, Lyon

    Google Scholar 

  • Coope GR (1986) Coleoptera analysis. In: Berglund BE (ed) Handbook of holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 703–713

    Google Scholar 

  • Coord Tronquet M (2014) Catalogue des Coléoptères de France. Association Roussillonnaise d’Entomologie, Perpignan

    Google Scholar 

  • Courchamp F, Hoffman BD, Russell JC, Leclerc C, Bellard C (2014) Climate change, sea-level rise, and conservation: keeping island biodiversity afloat. Trends Ecol Evol 29:127–130. doi:10.1016/j.tree.2014.01.001

    Article  PubMed  Google Scholar 

  • Delobel A, Delobel B (2003) Les plantes hôtes des bruches (Coleoptera Bruchidae) de la faune de France, une analyse critique. Bull mens Soc Linn Lyon 72:199–221

    Article  Google Scholar 

  • Delobel A, Tran M (1993) Les Coléoptères des denrées alimentaires entreposées dans les régions chaudes, Faune tropicale 32. CTA/Orstom Editions, Paris

    Google Scholar 

  • Faegri K, Iversen J (1989) Textbook of pollen analysis, 4th edn. Wiley, New York

    Google Scholar 

  • Galassi G, Spada G (2014) Sea-level rise in the Mediterranean Sea by 2050: roles of terrestrial ice melt, steric effects and glacial isostatic adjustment. Glob Planet Change 123:55–66. doi:10.1016/j.gloplacha.2014.10.007

    Article  Google Scholar 

  • Grimm EC (1987) CONISS: a fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computer Geosci 13:13–35

    Article  Google Scholar 

  • Guignot F (1947) Coléoptères Hydrocanthares, Faune de France 48. Paul Lechevalier, Paris

    Google Scholar 

  • Habid S, Yousuf A (2015) Effect of macrophytes on Phytophilous macroinvertebrate community: a review. J Entomol Zool Stud 3:377–384

    Google Scholar 

  • Hammer UT (1986) Saline Lake Ecosystems of the World. Junk W Publishers, Dordrecht

    Google Scholar 

  • Hoffman A (1950) Coléoptères Curculionides (première partie). Faune de France, vol 52. Librairie de la Faculté des Sciences, Paris

    Google Scholar 

  • Hoffman A (1954) Coléoptères Curculionides (deuxième partie). Faune de France, vol 59. Fédération Française des Sociétés de Sciences Naturelles, Paris

    Google Scholar 

  • Hoffman A (1958) Coléoptères Curculionides (troisième partie). Faune de France, vol 62. Fédération Française des Sociétés de Sciences Naturelles, Paris

    Google Scholar 

  • Irmler U, Heller K, Meyer H, Reinke HD (2002) Zonation of ground beetles (Coleoptera: Carabidae) and spiders (Araneida) in salt marshes at the north and the Baltic sea and the impact of the predicted sea level increase. Biodiv Conserv 11:1129–1147

    Article  Google Scholar 

  • Jeannel R (1941) Coléoptères Carabiques première partie, Faune de France 39. Paul Lechevalier et Fils, Paris

    Google Scholar 

  • Jeannel R (1942) Coléoptères Carabiques deuxième partie, Faune de France 40. Paul Lechevalier et Fils, Paris

    Google Scholar 

  • Juggins S (2007) C2 Version 1.5 user guide. Software for ecological and palaeoecological data analysis and visualisation. Newcastle University Press, Newcastle upon Tyne

    Google Scholar 

  • Juggins S (2012) The rioja package: Analysis of Quaternary Science Data, R package, version 0.7-3. http://cran.r-project.org/package=rioja

  • Koch K (1989a) Die Käfer Mitteleuropas, Ökologie 1. Goecke and Evers, Krefeld

    Google Scholar 

  • Koch K (1989b) Die Käfer Mitteleuropas, Ökologie 2. Goecke and Evers, Krefeld

    Google Scholar 

  • Koch K (1992) Die Käfer Mitteleuropas, Ökologie 3. Goecke and Evers, Krefeld

    Google Scholar 

  • Laborel J, Morhange C, Lafont R, Le Campion J, Laborel-Deguen F, Sartoretto S (1994) Biological evidence of sea-level rise during the last 4500 years on the rocky coasts of continental southwestern France and Corsica. Mar Geol 120:203–223. doi:10.1016/0025-3227(94)90059-0

    Article  Google Scholar 

  • Lambeck K, Purcell A (2005) Sea-level change in the Mediterranean sea since the LGM: model predictions for tectonically stable areas. Quat Sci Rev 24:1969–1988. doi:10.1016/j.quascirev.2004.06.025

    Article  Google Scholar 

  • Magny M, Vannière B, Zanchetta G, Fouache E, Touchais G, Petrika L, Coussot C, Walter-Simonnet AV, Arnaud F (2009) Possible complexity of the climatic event around 4300–3800 cal. BP in the central and western Mediterranean. The Holocene 19:823–833. doi:10.1177/0959683609337360

    Article  Google Scholar 

  • Magny M, Combourieu-Nebout N, de Beaulieu JL et al (2013) North-south palaeohydrological contrasts in the central Mediterranean during the Holocene: tentative synthesis and working hypotheses. Clim Past 9:2043–2071. doi:10.5194/cp-9-2043-2013

    Article  Google Scholar 

  • Magurran AE, Baillie SR, Buckland ST, Dick JM, Elston DA, Marian Scott E, Smith RI, Somerfield PJ, Watt AD (2010) Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends Ecol Evol 25:574–582. doi:10.1016/j.tree.2010.06.016

    Article  PubMed  Google Scholar 

  • Médail F (2013) The unique nature of Mediterranean island floras and the future of plant conservation. In: Cardona Pons E, Estaún Clarisó I, Comas Casademont M, Fraga i Arguimbau P (eds) Islands and plants: preservation and understanding of flora on Mediterranean islands. 2nd Botanical Conference in Menorca. Consell Insular de Menorca, Institut Menorquí d’Estudis, Recerca 20, Menorca, pp 325–350

    Google Scholar 

  • Médail F, Ponel P, Brousset L, Poher Y, Master SET SBEM students (Aix Marseille University) (2014). Contributions à l’inventaire de la biodiversité terrestre de l’île de Cavallo (Archipel Lavezzi, Bonifacio, Corse du Sud). Note naturaliste, Initiative pour les Petites Îles de Méditerranée (PIM). www.initiative-pim.org/document/55542

  • Médail F, Ponel P, Rivière V, Master SET SBEM students (Aix Marseille University) (2015). Contributions à l’inventaire des arthropodes terrestres et aquatiques sur l’île de Cavallo (Archipel Lavezzi, Bonifacio, Corse du Sud). Note naturaliste, Initiative pour les Petites Îles de Méditerranée (PIM). www.initiative-pim.org/document/79864

  • Médail F, Myers N (2004) Mediterranean Basin. In: Mittermeier RA, Robles Gil P, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, da Fonseca GAB (eds) Hotspots revisited: earth’s biologically richest and most endangered terrestrial eco regions. CEMEX, Monterrey, Conservation International, Washington, pp 144–147

    Google Scholar 

  • Morhange C, Laborel J, Hesnard A (2001) Changes of relative sea level during the past 5000 years in the ancient harbor of Marseilles, Southern France. Palaeogeogr Palaeoclimatol Palaeoecol 166:319–329

    Article  Google Scholar 

  • Nicholls RJ, Woodroffe C, Burkett V (2016) Coastal degradation as an indicator of global change. In: Letcher T (ed) Climate change: observed impacts on planet earth, 2nd edn. Elsevier Press, Oxford, pp 309–324

    Chapter  Google Scholar 

  • Paulian R, Baraud J (1982) In: Lechevalier S.A.R.L (ed) Faune des Coléoptères de France, vol 2. Lucanoidea et Scarabaeoidae. Encyclopédie Entomologique 43 Paris

  • Peyron O, Magny M, Goring S et al (2013) Contrasting patterns of climatic changes during the Holocene across the Italian Peninsula reconstructed from pollen data. Clim Past 9:1233–1252. doi:10.5194/cp-9-1233-2013

    Article  Google Scholar 

  • Pielou E (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144

    Article  Google Scholar 

  • Pinder AM, Halse SA, McRae JM, Shiel RJ (2005) Occurrence of aquatic invertebrates of the wheat belt region of western Australia in relation to salinity. Hydrobiologia 543:1–24. doi:10.1007/s10750-004-5712-3

    Article  Google Scholar 

  • PIM initiative: Initiative pour les petites îles de Méditerranée. www.initiative-pim.org

  • Poirier C, Sauriau PG, Chaumillon E, Bertin X (2010) Influence of hydro-sedimentary factors on mollusc death assemblages in a temperate mixed tide-and-wave dominated coastal environment: implications for the fossil record. Cont Shelf Res 30:1876–1890. doi:10.1016/j.csr.2010.08.015

    Article  Google Scholar 

  • Ponel P, Gandouin E, Coope GR, Andrieu-Ponel V, Guiter F, Van Vliet-Lanoë B, Franquet E, Brocandel M, Brulhet J (2007) Insect evidence for environmental and climate changes from Younger Dryas to Sub-Boreal in a river floodplain at St-Momelin (St-Omer basin, northern France), Coleoptera and Trichoptera. Palaeogeogr Palaeoclimatol Palaeoecol 245:483–504. doi:10.1016/j.palaeo.2006.09.005

    Article  Google Scholar 

  • R Development Core Team R (2011) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna. http://www.R-project.org

  • Reille M (1984) Origine de la végétation actuelle de la Corse sud-orientale; analyse pollinique de cinq marais côtiers. Pollen Spores 26:43–60

    Google Scholar 

  • Reille M (1992) New pollen-analytical researches in Corsica: the problem of Quercus ilex L. and Erica arborea L., the origin of Pinus halepensis Miller forests. New Phytol 122:359–378

    Article  Google Scholar 

  • Reille M (1999) Pollen et spores d’Europe et d’Afrique du Nord, 2nd edn. Laboratoire de Botanique Historique et Palynologie, Marseille

    Google Scholar 

  • Ribera I (2000) Biogeography and conservation of Iberian water beetles. Biol Conserv 92:131–150

    Article  Google Scholar 

  • Saint-Claire Deville J (1914) Catalogue critique des coléoptères de la Corse. Imprimerie Adeline, Poisson G et Cie, Caen

    Book  Google Scholar 

  • Schallenberg M, Hall CJ, Burns CW (2003) Consequences of climate-induced salinity increases on zooplankton abundance and diversity in coastal lakes. Mar Ecol Prog Ser 251:181–189

    Article  Google Scholar 

  • Shannon CE, Weaver W (1964) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Soldati F, Coache A (2005) Faunistique des Coléoptères Tenebrionidae de Corse, résultats d’une deuxième champagne de prospections. Bull Soc Linn Bordeaux 33:79–98

    Google Scholar 

  • Thérond J (1975–1976) Catalogue des Coléoptères de la Camargue et du Gard I, II. Société d’Étude des Sciences Naturelles de Nîmes, Nîmes

  • Thomaz SM, Ribiero da Cunha E (2010) The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnol Bras 22:218–236. doi:10.4322/actalb.02202011

    Article  Google Scholar 

  • Vacchi M, Marriner N, Morhange C, Spada G, Fontana A, Rovere A (2016) Multiproxy assessment of Holocene relative sea-level changes in the western Mediterranean: sea-level variability and improvements in the definition of the isostatic signal. Earth-Sci Rev 155:172–197. doi:10.1016/j.earscirev.2016.02.002

    Article  Google Scholar 

  • Vannière B, Power MJ, Roberts N et al (2011) Circum-Mediterranean fire activity and climate changes during the mid-Holocene environmental transition (8500–2500 cal. BP). The Holocene 21:53–75. doi:10.1177/0959683610384164

    Article  Google Scholar 

  • Velasco J, Millán A, Hernández J, Gutiérrez C, Abellán P, Sánchez D, Ruiz M (2006) Response of biotic communities to salinity changes in a Mediterranean hypersaline stream. Saline Syst 2:12. doi:10.1186/1746-1448-2-12

    Article  PubMed  PubMed Central  Google Scholar 

  • Vella C, Provansal M (2000) Relative sea-level rise and neotectonic events during the last 6500 yr on the southern eastern Rhône delta, France. Mar Geol 170:27–39

    Article  Google Scholar 

  • Virah-Sawmy M, Willis KJ, Gillson L (2009) Threshold response of Madagascar’s littoral forest to sea-level rise. Global Ecol Biogeogr 18:98–110. doi:10.1111/j.1466-8238.2008.00429.x

    Article  Google Scholar 

  • Walker PD, Wijnhoven S, van der Velde G (2013) Macrophyte presence and growth form influence macro invertebrate community structure. Aquat Bot 104:80–87. doi:10.1016/j.aquabot.2012.09.003

    Article  Google Scholar 

  • Willis KJ, Bailey RM, Bhagwat SA, Birks HJB (2010) Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data. Trends Ecol Evol 25:583–591. doi:10.1016/j.tree.2010.07.006

    Article  CAS  PubMed  Google Scholar 

  • Wong PP, Losada IJ, Gattuso JP, Hinkel J, Khattabi A, McInnes KL, Saito Y, Sallenger A (2014) Coastal systems and low-lying areas. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy ES, MacCraken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation and vulnerability. Part A: global and sectoral aspects. contribution of working group II to the Fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Woodroffe CD, Murray-Wallace CV (2012) Sea-level rise and coastal change: the past as a guide to the future. Quat Sci Rev 54:4–11. doi:10.1016/j.quascirev.2012.05.009

    Article  Google Scholar 

Download references

Acknowledgements

This study was incorporated within the framework of the CoP2A (Corsican Palaeoclimate, Palaeoenvironments & Anthropization) project, which is supported by the Laboratoire d’Excellence Objectif-Terre Bassin méditerranéen (Labex OT-Med) of Aix Marseille University (ANR-11-LABEX-0061), and by the DyPaCo (Dynamique des paléoenvironnements de la Corse, convention no.15/005) project which is supported by the Office de l’environnement de la Corse (OEC)/Conservatoire botanique national de Corse. The fieldwork was funded by the French government (projet Investissements d’Avenir) within the Initiative d’excellence A*MIDEX/MEDNET of Aix Marseille University (ANR-11-IDEX-0001-02), and performed during a field school of the Master SET-SBEM of Aix Marseille University. The authors wish to thank the Conservatoire Botanique National de Corse and its director Laetitia Hugot for their constant support of this research. We also thank the Association pour la protection de l’environnement de l’île de Cavallo (APEIC), notably Mrs. Matthieu Bidali and Michel Orlanducci for their permission to work on the private island of Cavallo. Finally, thanks are due to the two anonymous reviewers for their constructive remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoann Poher.

Additional information

Communicated by Eckehard G. Brockerhoff.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poher, Y., Ponel, P., Guiter, F. et al. Erosion of insect diversity in response to 7000 years of relative sea-level rise on a small Mediterranean island. Biodivers Conserv 26, 1641–1657 (2017). https://doi.org/10.1007/s10531-017-1322-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-017-1322-z

Keywords

Navigation