Skip to main content

Advertisement

Log in

Ants at the edge: a sharp forest-steppe boundary influences the taxonomic and functional organization of ant species assemblages along elevational gradients in northwestern Patagonia (Argentina)

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Biogeographic transitions may play a significant role in generating unique biodiversity patterns along different spatial dimensions of the geobiosphere. The extent, however, to which the presence of large-scale biogeographic transitions interacts with local environmental variation to account for elevational patterns in species diversity still remains elusive. To address this issue, we analysed the association of local variation in environmental variables (temperature, precipitation, vegetation cover, plant species richness and soil conditions) with the taxonomic and functional structuring of ant species assemblages on five elevation gradients across a well-established biogeographic transition between Subantarctic forests and high-Andean steppes in north-western Patagonia (Argentina). Data on the presence/absence of 15 ant species were obtained from 486 pitfall traps arranged in fifty-four 100 m2 grid plots of nine traps, established at intervals of approximately 100 m elevation, measured from the base to the summit of each mountain. The elevational replacement of lowland shrublands and forests by stunted forests and high Andean steppes was associated with a decrease in species richness; minimum richness (or even absence of ants on some mountains) was recorded at intermediate elevations. Ant richness decreased as temperature decreased and as tree canopy cover increased; however, temperature was the strongest predictor of richness. About 13.8 % of elevational variation in richness was accounted for by temperature, independently of tree canopy cover and macrohabitats; another 18.9 % was accounted for by the shared effects of temperature and macrohabitats. The presence of some species was associated with lowland shrublands and forests but the high Andean steppes were inhabited mainly by ubiquitous species, i.e. widespread species whose presence was recorded in all macrohabitats. We concluded that the transition between the Subantarctic forests and high Andean steppes represents a sharp barrier to ant species’ elevational distribution. This, in association with elevational variation in continuous environmental functions, mainly temperature, influences the richness and taxonomic and functional structuring of ant species assemblages at temperate latitudes of the southern hemisphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersen AN (2000) Global ecology of rainforest ants. Functional groups in relation to environmental stress and disturbance. In: Agosti D, Majer JD, Alonso LE, Schultz TR (eds) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution, Washington, pp 25–44

    Google Scholar 

  • Barros V, Cordón V, Moyano C, Méndez R, Forquera J, Pizzio O (1983) Cartas de precipitación de la zona oeste de las provincias de Río Negro y Neuquén. Internal Report. Facultad Ciencias dela Agricultura, Universidad Nacional del Comahue, Neuquén, Argentina

  • Bartón K (2013) MuMln: multi-model inference. R package, version 1.9.13. http://www.r-forge.r-project.org/projects/mumin/. Accessed May 2014

  • Bestelmeyer BT, Wiens JA (2001) Ant biodiversity in semiarid landscape mosaics: the consequences of grazing vs. natural heterogeneity. Ecol Appl 11:1123–1140

    Article  Google Scholar 

  • Bharti H, Sharma YP, Bharti M, Pfeiffer M (2013) Ant species richness, endemicity and functional groups, along an elevational gradient in the Himalayas. Asian Myrmecol 5:79–101

    Google Scholar 

  • Botes A, McGeoch MA, Robertson HG, van Niekerk A, Davids HP, Chown SL (2006) Ants, altitude and change in the Northern Cape floristic region. J Biogeogr 33:71–90

    Article  Google Scholar 

  • Boulton AM, Davies KF, Ward PS (2005) Species richness, abundance, and composition of ground-dwelling ants in Northern California grasslands: role of plants, soil, and grazing. Environ Entomol 34:96–104

    Article  Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  • Brown WL Jr (1973) A comparison of the Hylean and Congo-West African rain forest ant faunas. In: Meggers BJ, Ayensu ES, Duckworth WD (eds) Tropical forest ecosystems in Africa and South America: a comparative review. Smithsonian Institution Press, Washington, pp 161–185

    Google Scholar 

  • Brown WL Jr (2000) Diversity of ants. In: Agosti D, Majer JD, Alonso LE, Schultz TR (eds) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution, Washington, pp 45–79

    Google Scholar 

  • Brühl CA, Mohamed M, Linsenmair KE (1999) Altitudinal distribution of leaf litter ants along a transect in primary forests on Mount Kinabalu, Sabah, Malaysia. J Trop Ecol 15:265–277

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference. A practical information-theoretic approach, Second edn. Springer-Verlag, New York

    Google Scholar 

  • Cabrera AL, Willink A (1973) Biogeografía de América Latina. Secretaría General de la Organización de los Estados Americanos, Washington

    Google Scholar 

  • Chase JM (2007) Drought mediates the importance of stochastic community assembly. Proc Natl Acad Sci 104:17430–17434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chown SL, Gaston KJ (1999) Exploring links between physiology and ecology at macro-scales: the role of respiratory metabolism in insects. Biol Rev Camb Philos Soc 74:87–120

    Article  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2001) PRIMER v5: User manual/tutorial, 91 pp. Primer-E, Plymouth

  • Clarke KR, Warwick R (2001) Changes in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E, Plymouth

    Google Scholar 

  • Daniels LD, Veblen TT (2004) Spatiotemporal influences of climate on altitudinal treeline in northern Patagonia. Ecology 85:1284–1296

    Article  Google Scholar 

  • Davidson DW (1977) Species diversity and community organization in desert seed-eating ants. Ecology 58:711–724

    Article  Google Scholar 

  • Digweed SC, Currie CR, Carcamo HA, Spence JR (1995) Digging out the “digging-in effect” of pitfall traps: influences of depletion and disturbance on catches of ground beetles (Coleoptera: Carabidae). Pedobiologia 39:561–576

    Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Dunn RR, Agosti D, Andersen AN, Arnan X, Bruhl CA, Cerda X, Ellison AM, Fisher BL, Fitzpatrick MC, Gibb H, Gotelli NJ, Gove AD, Guenard B, Janda M, Kaspari M, Laurent EJ, Lessard J-P, Longino J-P, Majer JD, Menke SB, McGlynn TP, Parr CL, Philpott SM, Pfeiffer M, Retana J, Suarez AV, Vasconcelos HJ, Weiser MD, Sanders NJ (2009) Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecol Lett 12:324–333

    Article  PubMed  Google Scholar 

  • Ezcurra C, Brion C (2005) Plantas del Nahuel Huapi: Catálogo de la Flora Vascular del Parque Nacional Nahuel Huapi, Argentina. Universidad Nacional del Comahue y Red Latinoamericana de Botánica, San Carlos de Bariloche

    Google Scholar 

  • Farji-Brener AG, Ruggiero A (1994) Leaf-cutting ants (Atta and Acromyrmex) inhabiting Argentina: patterns in species richness and geographical range sizes. J Biogeogr 21:391–399

    Article  Google Scholar 

  • Fergnani PN, Sackmann P, Ruggiero A (2010) Richness-environment relationships in epigaeic ants across the Subantarctic-Patagonian transition zone. Insect Conserv Diver 3:278–290

    Article  Google Scholar 

  • Fergnani PN, Sackmann P, Ruggiero A (2013) The spatial variation in ant species composition and functional groups across the Subantarctic-Patagonian transition zone. J Insect Conserv 55:1–11

    Google Scholar 

  • Ferreyra M, Clayton S, Ezcurra C (1998) La flora altoandina de los sectores este y oeste del Parque Nacional Nahuel Huapi, Argentina. Darwiniana 36:65–79

    Google Scholar 

  • Fisher BL (1998) Ant diversity patterns along an elevational gradient in the Reserve Speciale d’Anjanaharibe-Sud and on the western Masoala Peninsula, Madagascar. Fieldiana Zool 90:39–67

    Google Scholar 

  • Gaston KJ (2003) The structure and dynamics of geographic ranges. Oxford University Press, Oxford

    Google Scholar 

  • Ghalambor CK, Huey RB, Martin PR, Tewksbury JJ, Wang G (2006) Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr Comp Biol 46:5–17

    Article  PubMed  Google Scholar 

  • Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711

    Article  CAS  PubMed  Google Scholar 

  • Grytnes JA, Vetaas OR (2002) Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. Am Nat 159:294–304

    Article  PubMed  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev Camb Philos Soc 80:489–513

    Article  PubMed  Google Scholar 

  • Hoiss J, Krauss B, Potts SG, Roberts S, Steffan-Dewenter I (2012) Altitude acts as an environmental filter on phylogenetic composition, traits and diversity in bee communities. Proc R Soc Lond B 279:4447–4456

    Article  Google Scholar 

  • Holway DA, Suarez AV, Case TJ (2002) Role of abiotic factors in governing susceptibility to invasion: a test with Argentine ants. Ecology 83:1610–1619

    Article  Google Scholar 

  • Janzen DH (1967) Why mountain passes are higher in the tropics. Am Nat 101:233–249

    Article  Google Scholar 

  • Jobbágy EG, Paruelo JM, León RJC (1995) Estimación del régimen de precipitación a partir de la distancia a la cordillera en el noroeste de la Patagonia. Ecol Austral 5:47–53

    Google Scholar 

  • Johnson RA (1992) Soil texture as an influence on the distribution of the desert seed harvester ants Pogonomyrmex rugosus and Messor pergandei. Oecologia 89:118–124

    Article  Google Scholar 

  • Kark S, van Rensburg BJ (2006) Ecotones: marginal or central areas of transition? Isr J Ecol Evol 52:29–53

    Article  Google Scholar 

  • Kaspari M, O’Donnell S, Kercher JR (2000) Energy, density, and constraints to species richness: ant assemblages along a productivity gradient. Am Nat 155:280–293

    Article  PubMed  Google Scholar 

  • Kaspari M, Ward PS, Yuan M (2004) Energy gradients and the geographic distribution of local ant diversity. Oecologia 140:407–413

    Article  PubMed  Google Scholar 

  • Kennington GS (1957) Infuence of altitude and temperature upon rate of oxygen consumption of Tribolium confusum Duval and Camponotus pennsylvanicus modoc Wheeler. Physiol Zool 30:305–314

    CAS  Google Scholar 

  • Kitzberger T (2012) Ecotones as complex arenas of disturbance, climate and human impacts: the trans-Andean forest-steppe ecotone of northern Patagonia. In: Myster R (ed) Ecotones between forest and grassland. Springer, New York, pp 59–88

    Chapter  Google Scholar 

  • Klute A (1986) Methods of soil analysis. Part 1. Physical and mineralogical methods. American Society of Agronomy-Soil Science Society of America, Madison

    Google Scholar 

  • Kusnezov N (1953) Las hormigas en los Parques Nacionales de la Patagonia y los problemas relacionados. Ministerio de Agricultura y Ganadería de la Nación, Buenos Aires

    Google Scholar 

  • Kusnezov N (1959) La fauna de hormigas en el oeste de la Patagonia y Tierra del Fuego. Acta Zool Lilloana XVII:321–401

    Google Scholar 

  • Kusnezov N (1978) Hormigas argentinas. Clave para su identificación. Miscelanea-Fundacion. Miguel Lillo, Tucumán

    Google Scholar 

  • Legendre L, Legrendre P (1998) Numerical ecology, 2nd edn. Elsevier Scientific Publishing Company, Amsterdam-Oxford-New York

    Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Google Scholar 

  • Longino JT, Colwell RK (2011) Density compensation, species composition, and richness of ants on a neotropical elevational gradient. Ecosphere 2:art 29

    Article  Google Scholar 

  • Machac A, Janda M, Dunn RR, Sanders NJ (2011) Elevational gradients in phylogenetic structure of ant communities reveal the interplay of biotic and abiotic constraints on diversity. Ecography 34:364–371

    Article  Google Scholar 

  • Mani MS (1968) Ecology and biogeography of high altitude insects. Dr. W. Junk N. V. Publishers, The Hague

    Book  Google Scholar 

  • Manly BF (2006) Randomization, bootstrap and Monte Carlo methods in biology. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  • Menke SB, Holway DA (2006) Abiotic factors control invasion by ants at the community scale. J Anim Ecol 75:368–376

    Article  PubMed  Google Scholar 

  • Mermoz M, Kitzberger T, Veblen TT (2005) Landscape influences on occurrence and spread of wildfires in Patagonian forests and shrublands. Ecology 86:2705–2715

    Article  Google Scholar 

  • Munyai T, Foord S (2012) Ants on a mountain: spatial, environmental and habitat associations along an altitudinal transect in a centre of endemism. J Insect Conserv 4:1–19

    Google Scholar 

  • Paruelo JM, Beltran A, Jobbagy E, Sala OE, Golluscio RA (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecol Austral 8:85–101

    Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, ISBN 3-900051-07-0, http://www.R-project.org

  • Rangel TF, Diniz-Filho JAF, Bini LM (2010) SAM: a comprehensive application for spatial analysis in macroecology. Ecography 33:46–50

    Article  Google Scholar 

  • Ruggiero A, Ezcurra C (2003) Regiones y transiciones biogeográficas: complementariedad de los análisis en biogeografía histórica y ecológica. In: Morrone JJ, Llorente J (eds) Una perspectiva Latinoamericana de la Biogeografía. Fac. de Ciencias, UNAM, México DF, pp 141–154

    Google Scholar 

  • Sanders NJ (2002) Elevational gradients in ant species richness: area, geometry, and Rapoport’s rule. Ecography 25:25–32

    Article  Google Scholar 

  • Sanders NJ, Moss J, Wagner D (2003) Patterns of ant species richness along elevational gradients in an arid ecosystem. Glob Ecol Biogeogr 12:93–102

    Article  Google Scholar 

  • Sanders NJ, Lessard JP, Fitzpatrick MC, Dunn RR (2007) Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Global Ecol Biogeogr 16:640–649

    Article  Google Scholar 

  • Smith TB, KarkS Schneider CJ, Wayne RK, Moritz C (2001) Biodiversity hotspots and beyond: the need for conserving environmental transitions. Trends Ecol Evol 16:431

    Article  Google Scholar 

  • Snelling RR, Hunt JH (1975) The ants of Chile (Hymenoptera: Formicidae). Rev Chil Entomol 9:63–129

    Google Scholar 

  • Stevens GC (1992) The elevational gradient in altitudinal range: an extension of the Rapoport’s latitudinal rule to altitude. Am Nat 140:893–911

    Article  CAS  PubMed  Google Scholar 

  • ter Braak CJF, P. Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows User’s guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, NY

  • van der Maarel E (1990) Ecotones and ecoclines are different. J Veg Sci 1:135–138

    Article  Google Scholar 

  • van Ingen LT, Campos RI, Andersen AN (2008) Ant community structure along an extended rain forest–savanna gradient in tropical Australia. J Trop Ecol 24:445–455

    Google Scholar 

  • Veblen TT, Kitzberger T, Raffaele E, Lorenz D (2003) Fire history and vegetation changes in northern Patagonia, Argentina. In: Veblen T, Baker W, Montenegro G, Swetnam T (eds) Fire and climatic change in temperate ecosystems of the western Americas. Springer, New York, pp 265–295

    Chapter  Google Scholar 

  • Walter H (1979) Vegetation of the Earth and Ecological Systems of the Geo-Biosphere, Second edn. Springer Verlag, Berlin-Heidelberg, New York

    Book  Google Scholar 

  • Werenkraut V, Ruggiero A (2011) Quality of basic data and method to identify shape affect the perception of richness-altitude relationships in meta-analysis. Ecology 91:253–260

    Article  Google Scholar 

  • Werenkraut V, Ruggiero A (2013) Altitudinal variation in the taxonomic composition of ground-dwelling beetle assemblages in NW Patagonia, Argentina: environmental correlates at regional and local scales. Insect Conserv Diver 6:82–92

    Article  Google Scholar 

  • Wilkie KTR, Mertl AL, Traniello JF (2010) Species diversity and distribution patterns of the ants of Amazonian Ecuador. PLoS One 5:e13146

    Article  Google Scholar 

Download references

Acknowledgments

We thank C. Ezcurra for plant taxonomic identifications and M. Sahores, F. Galossi, C. Galossi, and J. Benclowicz who assisted us in the field. This work was supported by the National Agency for the Promotion of Science and Technology (ANPCyT-FONCYT, PICT-011826 and PICT 2011-0701), CONICET PIP-0089, and UNCOMA B176. The Argentina National Park Administration gave us permission to collect ants in Nahuel Huapi National Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Werenkraut.

Additional information

Communicated by Jens Wolfgang Dauber.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 369 kb)

Supplementary material 2 (DOC 79 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werenkraut, V., Fergnani, P.N. & Ruggiero, A. Ants at the edge: a sharp forest-steppe boundary influences the taxonomic and functional organization of ant species assemblages along elevational gradients in northwestern Patagonia (Argentina). Biodivers Conserv 24, 287–308 (2015). https://doi.org/10.1007/s10531-014-0808-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-014-0808-1

Keywords

Navigation