Skip to main content
Log in

Non-native ant invader displaces native ants but facilitates non-predatory invertebrates

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Many invasive ants, such as the European fire ant (Myrmica rubra), are particularly successful invaders due to their ability to form multi-nest, multi-queen ‘supercolonies’ that appear to displace native invertebrates in invaded regions. Myrmica rubra has invaded many areas in the Northeastern United States, including Western New York. Myrmica rubra invasion corresponds with decreases in native invertebrates, particularly ants, an effect which may be attributable to direct displacement, or because M. rubra prefers habitat unsuitable for native ants. We surveyed Western New York parklands to investigate native ant and non-ant invertebrate abundance in M. rubra-invaded and uninvaded areas. We then tested these observations with an ant pesticide treatment targeting M. rubra to investigate the direct impacts of M. rubra on the native ant and invertebrate community. A consistent, negative relationship was found between M. rubra and native ants in both the observational and experimental research, and native ant species only appeared in the pesticide-treated plots (with reduced M. rubra abundance). These data strongly suggest that M. rubra actively displaces the native ants with invasion instead of segregating by habitat. Myrmica rubra effects on non-ant invertebrates appeared more nuanced, however, in both the observational and experimental research. The absence or removal of M. rubra corresponded with decreased predatory invertebrate populations and increased non-predatory invertebrates. It appears that M. rubra has altered invertebrate communities in Western New York. Native invertebrate communities may be able to rebound with time, but our data suggest native recovery unlikely without management intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen CR, Epperson DM, Garmestani AS (2004) Red imported fire ant impacts on wildlife: a decade of research. Am Midl Nat 152:88–103

    Article  Google Scholar 

  • Bengston SE, Dornhaus A (2013) Colony size does not predict foraging distance in the ant Temnothorax rugatulus: a puzzle for standard scaling models. Insectes Soc 60:93–96

    Article  Google Scholar 

  • Bertelsmeier C, Blight O, Courchamp F (2016) Invasions of ants (Hymenoptera: Formicidae) in light of global climate change. Myrmecol News 22:25–42

    Google Scholar 

  • Boser CL, Hanna C, Faulkner KR et al (2012) Argentine ant management in conservation areas: results of a pilot study. Monogr West N Am Nat 7:518–530

    Google Scholar 

  • Cassill DL, Tschinkel WR (1996) A duration constant for worker-to-larva trophallaxis in fire ants. Insectes Soc 43:149–166

    Article  Google Scholar 

  • Cook J (2003) Conservation of biodiversity in an area impacted by the red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae). Biodivers Conserv 12:187–195

    Article  Google Scholar 

  • Ellison AM, Gotelli NJ, Farnsworth EJ et al (2012) A field guide to the ants of New England. Yale University Press, New Haven, London

    Google Scholar 

  • Elmes GW, Petal J (1990) Queen number as an adaptable trait: evidence from wild populations of two red ant species (Genus myrmica). J Anim Ecol 59:675–690

    Article  Google Scholar 

  • Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. Sage, Thousand Oaks

    Google Scholar 

  • Gaigher R, Samways MJ, Jolliffe KG et al (2012) Precision control of an invasive ant on an ecologically sensitive tropical island: a principle with wide applicability. Ecol Appl 22:1405–1412

    Article  CAS  PubMed  Google Scholar 

  • Garnas J (2004) European fire ants on Mount Desert Island, Maine: population structure, mechanisms of competition and community impacts of Myrmica rubra L. (Hymenoptera: Formicidae). Ecology and Environmental Sciences, University of Maine, Orono

    Google Scholar 

  • Garnas JR, Drummond FA, Groden E (2007) Intercolony aggression within and among local populations of the invasive ant, Myrmica rubra (Hymenoptera: Formicidae), in coastal Maine. Environ Entomol 36:105–113

    Article  PubMed  Google Scholar 

  • Garnas J, Groden E, Drummond FA (2014) Mechanisms of competitive displacement of native ant fauna by invading Myrmica rubra (Hymenoptera: Formicidae) populations. Environ Entomol 43:1496–1506

    Article  PubMed  Google Scholar 

  • Gibb H, Hochuli DF (2003) Colonisation by a dominant ant facilitated by anthropogenic disturbance: effects on ant assemblage composition, biomass, and resource use. Oikos 103:469–478

    Article  Google Scholar 

  • Gorb SN, Gorb EV (1999) Effects of ant species composition on seed removal in deciduous forest in eastern Europe. Oikos 84:110–118

    Article  Google Scholar 

  • Gotelli NJ, Arnett AE (2000) Biogeographic effects of red fire ant invasion. Ecol Lett 3:257–261

    Article  Google Scholar 

  • Groden E, Drummond FA, Garnas J et al (2005) Distribution of an invasive ant, Myrmica rubra (Hymenoptera: Formicidae), in Maine. J Econ Entomol 98:1774–1784

    Article  PubMed  Google Scholar 

  • Hanna C, Naughton I, Boser C et al (2015) Testing the effects of ant invasions on non-ant arthropods with high-resolution taxonomic data. Ecol Appl 25:1841–1850

    Article  PubMed  Google Scholar 

  • Herbers JM (1986) Nest site limitation and facultative polygyny in the ant Leptothorax longispinosus. Behav Ecol Sociobiol 19:115–122

    Article  Google Scholar 

  • Hicks BJ, Pilgrim BL, Marshall HD (2014) Origins and genetic composition of the European fire ant (Hymenoptera: Formicidae) in Newfoundland, Canada. Can Entomol 146:457–464

    Article  Google Scholar 

  • Hobbs RJ, Huenneke LF (1992) Disturbance, diversity, and invasion: implications for conservation. Conserv Biol 6:324–337

    Article  Google Scholar 

  • Holway DA (1998a) Effect of Argentine ant invasions on ground-dwelling arthropods in northern California riparian woodlands. Oecologia 116:252–258

    Article  PubMed  Google Scholar 

  • Holway DA (1998b) Factors governing rate of invasion: a natural experiment using Argentine ants. Oecologia 115:206–212

    Article  PubMed  Google Scholar 

  • Holway DA, Suarez AV (2006) Homogenization of ant communities in mediterranean California: the effects of urbanization and invasion. Biol Cons 127:319–326

    Article  Google Scholar 

  • Holway DA, Lach L, Suarez AV et al (2002) The causes and consequences of ant invasions. Annu Rev Ecol Syst 33:181–233

    Article  Google Scholar 

  • Human KG, Gordon D (1996) Exploitation and interference competition between the invasive Argentine Ant, Linepithema humile, and native ant species. Oecologia 105:405–412

    Article  PubMed  Google Scholar 

  • Kennedy TA (1998) Patterns of an invasion by Argentine ants (Linepithema humile) in a riparian corridor and its effects on ant diversity. Am Midl Nat 140:343–350

    Article  Google Scholar 

  • King JR, Tschinkel WR (2008) Experimental evidence that human impacts drive fire ant invasions and ecological change. PNAS 105:20339–20343

    Article  PubMed  PubMed Central  Google Scholar 

  • King JR, Warren RJ, Bradford MA (2013) Social insects dominate eastern US temperate hardwood forest macroinvertebrate communities in warmer regions. PLoS ONE 8:e75843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krushelnycky P, Gillespie RG (2008) Compositional and functional stability of arthropod communities in the face of ant invasions. Ecol Appl 18:1547–1562

    Article  PubMed  Google Scholar 

  • Labatore AC, Spiering DJ, Potts DL et al (2016) Canopy trees in an urban landscape—viable forests or long-lived gardens? Urban Ecosyst 20:393–401

    Article  Google Scholar 

  • Longino JT (2003) The Crematogaster (Hymenoptera, Formicidae, Myrmicinae) of Costa Rica. Zootaxa 151:1–150

    Article  Google Scholar 

  • MacDougall AS, Turkington R (2005) Are invasive species the drivers or passengers of change in degraded ecosystems? Ecology 86:42–55

    Article  Google Scholar 

  • MacDougall AS, Gilbert B, Levine JM (2009) Plant invasions and the niche. J Ecol 97:609–615

    Article  Google Scholar 

  • McPhee K, Garnas J, Drummond F et al (2012) Homopterans and an invasive red ant, Myrmica rubra (L.), in Maine. Environ Entomol 41:59–71

    Article  PubMed  Google Scholar 

  • Menke SB, Holway DA (2006) Abiotic factors control invasion by Argentine ants at the community scale. J Anim Ecol 75:368–376

    Article  PubMed  Google Scholar 

  • Michlewicz M, Tryjanowski P (2017) Anthropogenic waste products as preferred nest sites for Myrmica rubra (L.) (Hymenoptera, Formicidae). J Hymenopt Res 57:103–114

    Article  Google Scholar 

  • Mooney HA, Cleland EE (2001) The evolutionary impact of invasive species. Proc Natl Acad Sci 98:5446–5451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris JR, Steigman KL (1993) Effects of polygyne fire ant invasion on native ants of a blackland prairie in Texas. Southwest Nat 38:136–140

    Article  Google Scholar 

  • Morrison LW (2002) Long-term impacts of an arthropod-community invasion by the imported fire ant, Solenopsis invicta. Ecology 83:2337–2345

    Article  Google Scholar 

  • Morrison LW, Porter SD (2003) Positive association between densities of the red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae), and generalized ant and arthropod diversity. Environ Entomol 32:548–554

    Article  Google Scholar 

  • Naumann K, Higgins RJ (2015) The European fire ant (Hymenoptera: Formicidae) as an invasive species: impact on local ant species and other epigaeic arthropods. Can Entomol 147:592–601

    Article  Google Scholar 

  • Ness JH, Morales MA, Kenison E et al (2013) Reciprocally beneficial interactions between introduced plants and ants are induced by the presence of a third introduced species. Oikos 122:695–704

    Article  Google Scholar 

  • Olden JD, Rooney TP (2006) On defining and quantifying biotic homogenization. Glob Ecol Biogeogr 15:113–120

    Article  Google Scholar 

  • Ouellette GD, Drummond FA, Choate B et al (2010) Ant diversity and distribution in Acadia National Park, Maine. Environ Entomol 39:1447–1456

    Article  PubMed  Google Scholar 

  • Parr CL, Gibb H (2009) Competition and the role of dominant ants. In: Lach L, Parr CL, Abbott KL (eds) Ant ecology. Oxford University Press, Oxford, pp 77–96

    Chapter  Google Scholar 

  • Pedersen EK, Bedford TL, Grant WE et al (2003) Effect of red imported fire ants on habitat use by Hispid cotton rats (Sigmodon hispidus) and norther pygmy mice (Baiomys taylori). Southwest Nat 48:419–426

    Article  Google Scholar 

  • Porter SD, Sauvignano DA (1990) Invasion of polygyne fire ants decimates native ants and disrupts arthropod community. Ecology 71:2095–2106

    Article  Google Scholar 

  • R Core Team Version 3.5.0 (2018) R: a language and environment for statistical computing., 3.5.0 edn. R Foundation for Statistical Computing, Vienna, Austria

  • Richard F, Fabre A, Dejean A (2001) Predatory behavior in dominant arboreal ant species: the case of Crematogaster sp. (Hymenoptera: Formicidae). J Insect Behav 14:271–282

    Article  Google Scholar 

  • Rowles AD, Silverman J (2010) Argentine ant invasion associated with loblolly pines in the southeastern United States: minimal impacts but seasonally sustained. Environ Entomol 39:1141–1150

    Article  PubMed  Google Scholar 

  • Simberloff D, Martin J, Genovesi P et al (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66

    Article  PubMed  Google Scholar 

  • Snelling RR, Borowiec ML, Prebus MM (2014) Studies on California ants: a review of the genus Temnothorax (Hymenoptera, Formicidae). ZooKeys 372:27–89

    Article  Google Scholar 

  • Spiering D (2009) Tifft nature preserve management plan. Buffalo Science Museum, Buffalo, NY

    Google Scholar 

  • Stuble KL, Kirkman LK, Carroll CR (2009) Patterns of abundance of fire ants and native ants in a native ecosystem. Ecol Entomol 34:520–526

    Article  Google Scholar 

  • Verble-Pearson R, Pearson S (2016) European fire ant presence decreases native arboreal insect abundance in Acadia National Park, Maine, USA. Nat Areas J 36:162–165

    Article  Google Scholar 

  • Wardle DA, Peltzer DA (2017) Impacts of invasive biota in forest ecosystems in an aboveground-belowground context. Biol Invasions 19:3301–3316

    Article  Google Scholar 

  • Warren RJ II, McMillan A, King JR et al (2015) Forest invader replaces predation but not dispersal services by a keystone species. Biol Invasions 23:3153–3162

    Article  Google Scholar 

  • Warren R II, Reed K, Mathew A et al (2018a) Release from intraspecific competition promotes dominance of a non-native invader. Biol Invasions. https://doi.org/10.1007/s10530-018-1868-z

    Article  Google Scholar 

  • Warren RJ II, Mathew A, Reed K et al (2018b) Myrmica rubra microhabitat selection and putative ecological impact. Ecol Entomol 44:239–248

    Article  Google Scholar 

  • Zarnetske PL, Seabloom EW, Hacker SD (2010) Non-target effects of invasive species management: beachgrass, birds, and bulldozers in coastal dunes. Ecosphere 1:1–20

    Article  Google Scholar 

  • Zavaleta ES, Hobbs RJ, Mooney HA (2001) Viewing invasive species removal in a whole-ecosystem context. Trends Ecol Evol 16:454–459

    Article  Google Scholar 

Download references

Acknowledgements

We thank Amy McMillan and Chris Pennuto for comments on early versions of the manuscript. We also thank Dave Spiering, the Tifft Nature Preserve and the New York State Office of Parks, Recreation and Historic Preservation for site access, and we thank Abby Mathew and Kazz Archibald for field assistance and Camille Dorset for laboratory assistance. We also thank two anonymous reviewers for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Warren II.

Ethics declarations

Data accessibility

The data generated and analyzed for the current study are available in the SUNY Buffalo State Digital Commons [https://digitalcommons.buffalostate.edu/biology_data/6/].

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodman, M., Warren II, R.J. Non-native ant invader displaces native ants but facilitates non-predatory invertebrates. Biol Invasions 21, 2713–2722 (2019). https://doi.org/10.1007/s10530-019-02005-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-019-02005-w

Keywords

Navigation