Skip to main content
Log in

Effects of invasive aquatic carrion on soil chemistry and terrestrial microbial communities

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Carrion plays a crucial role in the recycling of nutrients and organic matter in ecosystems. Yet, despite their ecological importance, studies addressing the relevance of carrion originated from invasive alien species (IAS) in the interface between aquatic and terrestrial ecosystems are uncommon, especially those assessing belowground effects. In this study, we carried out a manipulative experiment to assess the impact of massive mortalities of the Asian clam Corbicula fluminea (Müller, 1774) as a carrion subsidy evaluating possible effects on the terrestrial soil chemistry and the structure of a microbial (bacteria and fungi) community. We placed five levels of C. fluminea density (0, 100, 500, 1000 and 2000 ind. m−2) and samples were collected 7, 30 and 90 days after clams’ addition. The results revealed that C. fluminea carrion have a significant effect belowground, especially on nutrients content (mainly NH4 +, NO2 , NO3 and PO4 3−), fungal biomass and fungal and bacterial diversity. Given the predicted increase and intensification of extreme climatic events and the widespread distribution of several aquatic IAS (including bivalve species such as C. fluminea) the ecological importance of these massive mortalities (and resulting carrion) cannot be ignored because they may affect microbial communities with significant impacts on nutrient cycling, even in adjacent terrestrial habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi:10.1111/j.1442-9993.2001.01070.pp.x

    Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008a) PERMANOVA + for primer: guide to software and statistical methods. PRIMER-E, Plymouth

    Google Scholar 

  • Anderson WB, Wait DA, Stapp P (2008b) Resources from another place and time: responses to pulses in a spatially subsidized system. Ecology 89:660–670. doi:10.1890/07-0234.1

    Article  PubMed  Google Scholar 

  • Barton PS, Cunningham SA, Lindenmayer DB, Manning AD (2013) The role of carrion in maintaining biodiversity and ecological process in terrestrial ecosystems. Oecologia 171:761–772. doi:10.1007/s00442-012-2460-3

    Article  PubMed  Google Scholar 

  • Benbow ME, Tomberlin JK, Tarone AM (2015) Introduction to carrion ecology, evolution, and their applications. In: Benbow ME, Tomberlin JK, Tarone AM (eds) Carrion ecology, evolution, and their applications. CRC Press, Boca Raton, pp 3–12

    Chapter  Google Scholar 

  • Bódis E, Tóth B, Sousa R (2014) Massive mortality of invasive bivalves as a potential resource subsidy for the adjacent terrestrial food web. Hydrobiologia 735:253–262. doi:10.1007/s10750-013-1445-5

    Article  Google Scholar 

  • Bothe H, Ferguson SJ, Newton WE (2007) Biology of nitrogen cycle. Elsevier, Amsterdam

    Google Scholar 

  • Bump JK, Tischler KB, Schrank AJ, Petrson RO, Vucetich JA (2009a) Large herbivores and aquatic-terrestrial links in southern boreal forests. J Anim Ecol 78:338–345. doi:10.1111/j.1365-2656.2008.01498.x

    Article  PubMed  Google Scholar 

  • Bump JK, Webster CR, Vucetich JA, Peterson RO, Shields JM, Powers MD (2009b) Ungulate carcasses perforate ecological filters and create biogeochemical hotspots in forest herbaceous layers allowing trees a competitive advantage. Ecosystems 12:996–1007. doi:10.1007/s10021-009-9274-0

    Article  Google Scholar 

  • Bump JK, Peterson RO, Vucetich JA (2009c) Wolves modulate soil nutrient heterogeneity and foliar nitrogen by configuring the distribution of ungulate carcasses. Ecology 90:3159–3167. doi:10.1890/09-0292.1

    Article  PubMed  Google Scholar 

  • Cammack JA, Pimsler ML, Crippen TL, Tomberlin JK (2015) Chemical ecology of vertebrate carrion. In: Benbow ME, Tomberlin JK, Tarone AM (eds) Carrion ecology, evolution, and their applications. CRC Press, Boca Raton, pp 187–212

    Chapter  Google Scholar 

  • Carter DO, Tibbett M (2003) Taphonomic mycota: fungi with forensic potential. J Forensic Sci 48:168–171. doi:10.1520/JFS2002169

    Article  PubMed  Google Scholar 

  • Carter DO, Tibbett M (2006) Microbial decomposition of skeletal muscle tissue (Ovis aries) in a sandy loam soil at different temperatures. Soil Biol Biochem 38:1139–1145. doi:10.1016/j.soilbio.2005.09.014

    Article  CAS  Google Scholar 

  • Carter DO, Yellowlees D, Tibbett M (2007) Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94:12–24. doi:10.1007/s00114-006-0159-1

    Article  CAS  PubMed  Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth Marine Laboratory, Plymouth

    Google Scholar 

  • Costa-Dias S, Freitas V, Sousa R, Antunes C (2010) Factors influencing epibenthic assemblages in the Minho estuary (NW Iberian Peninsula). Mar Pollut Bull 61:240–246. doi:10.1016/j.marpolbul.2010.02.020

    Article  CAS  PubMed  Google Scholar 

  • Crippen TL, Benbow ME, Pechal JL (2015) Microbial interactions during carrion decomposition. In: Benbow ME, Tomberlin JK, Tarone AM (eds) Carrion ecology, evolution, and their applications. CRC Press, Boca Raton, pp 31–64

    Chapter  Google Scholar 

  • Curran LM, Leighton M (2000) Vertebrate responses to spatiotemporal variation in seed production of mast-fruiting Dipterocarpacea. Ecol Monogr 70:101–128. doi:10.1890/0012-9615(2000)070[0101:VRTSVI]2.0.CO;2

    Article  Google Scholar 

  • DeVault TL, Rhodes OE, Shivik JA (2003) Scavenging by vertebrates: behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102:225–234. doi:10.1034/j.1600-0706.2003.12378.x

    Article  Google Scholar 

  • Doughty CE, Wolf A, Malhi Y (2013) The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. Nat Geosci 6:761–764. doi:10.1038/ngeo1895

    Article  CAS  Google Scholar 

  • Duarte S, Pascoal C, Alves A, Correia A, Cássio F (2010) Assessing the dynamic of microbial communities during leaf decomposition in a low-order stream by microscopic and molecular techniques. Microbiol Res 165:351–362. doi:10.1016/j.micres.2009.06.002

    Article  CAS  PubMed  Google Scholar 

  • Eyster LS (1986) Shell inorganic composition and onset of Shell mineralization during bivalve and gastropod embryogenesis. Biol Bull 170:211–231

    Article  CAS  Google Scholar 

  • Forbes SL, Dent BB, Stuart BH (2005) The effect of soil type on adipocere formation. Forensic Sci Int 154:35–43. doi:10.1016/j.forsciint.2004.09.108

    Article  PubMed  Google Scholar 

  • Henschel JR, Mahsberg D, Stumpf H (2001) Allochthonous aquatic insects increase predation and decrease herbivory in river shore food webs. Oikos 93:429–438. doi:10.1034/j.1600-0706.2001.930308.x

    Article  Google Scholar 

  • Hopkins DW, Wiltshire PEJ, Turner BD (2000) Microbial characteristics of soils from graves: an investigation at the interface of soil microbiology and forensic science. Appl Soil Ecol 14:283–288. doi:10.1016/S0929-1393(00)00063-9

    Article  Google Scholar 

  • Ilarri M, Antunes C, Guilhermino L, Sousa R (2011) Massive mortality of the Asian clam Corbicula fluminea in a highly invaded area. Biol Invasions 13:277–280. doi:10.1007/s10530-010-9833-5

    Article  Google Scholar 

  • Ilarri MI, Souza AT, Sousa R (2015) Contrasting decay rates of freshwater bivalves’ shells: aquatic versus terrestrial habitats. Limnologica 51:8–14. doi:10.1016/j.limno.2014.10.002

    Article  Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. In: Dodge DP (ed) Proceedings of the international large river symposium. Canadian Special Publication of Fisheries and Aquatic Sciences, pp 110–127

  • Leff JW, Jones SE, Prober SM, Barberan A, Borer ET, Firn JL, Harpole WS, Hobbie SE, Hofmockel KS, Knops JMH, McCulley RL, La Pierre K, Risch AC, Seabloom EW, Schütz M, Steenbock C, Stevens CJ, Fierer N (2015) Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci USA 112:10967–10972. doi:10.1073/pnas.1508382112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letnic M, Tamayo B, Dickman CR (2005) The responses of mammals to La Niña (El Niño Southern Oscillation)-associated rainfall, predation, and wildfire in central Australia. J Mammal 86:689–703. doi:10.1644/1545-1542(2005)086[0689:TROMTL]2.0.CO;2

    Article  Google Scholar 

  • McDowell WG, McDowell WH, Byers JE (2017) Mass mortality of a dominant invasive species in response to an extreme climate event: implications for ecosystem function. Limnol Oceanogr 62:177–188. doi:10.1002/lno.10384

    Article  Google Scholar 

  • Medeiros AO, Pascoal C, Graça AS (2009) Diversity and activity of aquatic fungi under low oxygen conditions. Freshw Biol 54:142–149. doi:10.1111/j.1365-2427.2008.02101.x

    Article  Google Scholar 

  • Melis C, Selva N, Teurlings I, Skarpe C, Linnell JDC, Andersen R (2007) Soil and vegetation nutrient response to bison carcasses in Białowieża Primeval Forest, Poland. Ecol Res 22:807–813. doi:10.1007/s11284-006-0321-4

    Article  CAS  Google Scholar 

  • Meserve PL, Kelt DA, Milstead WB, Gutierrez JR (2003) Thirteen years of shifting top-down and bottom-up control. Bioscience 53:633–646. doi:10.1641/0006-3568(2003)053[0633:TYOSTA]2.0.CO;2

    Article  Google Scholar 

  • Moore JC, Berlow EL, Coleman DC, de Ruiter PC, Dong Q, Hastings A, Johnson NC, McCann KS, Melville K, Morin PJ, Nadelhoffer K, Rosemond AD, Post DM, Sabo JL, Scow KM, Vanni MJ, Wall DH (2004) Detritus, trophic dynamics and biodiversity. Ecol Lett 7:584–600. doi:10.1111/j.1461-0248.2004.00606.x

    Article  Google Scholar 

  • Moore JW, Schindler DE, Carter JL, Fox J, Griffiths J, Holtgrieve GW (2007) Biotic control of stream fluxes: spawning salmon drive nutrient and matter export. Ecology 88:1278–1291. doi:10.1890/06-0782

    Article  PubMed  Google Scholar 

  • Mota M, Sousa R, Bio A, Araújo MJ, Braga C, Antunes C (2014) Seasonal changes in fish assemblages in the River Minho tidal freshwater wetlands, NW of the Iberian Peninsula. Ann Limnol 50:185–198. doi:10.1051/limn/2014012

    Article  Google Scholar 

  • Novais A, Souza AT, Ilarri M, Pascoal C, Sousa R (2015) From water to land: how an invasive clam may function as a resource pulse to terrestrial invertebrates. Sci Total Environ 538:664–671. doi:10.1016/j.scitotenv.2015.08.106

    Article  CAS  PubMed  Google Scholar 

  • Nowlin WH, Vanni MJ, Yang LH (2008) Comparing resource pulses in aquatic and terrestrial ecosystems. Ecology 89:647–659. doi:10.1890/07-0303.1

    Article  PubMed  Google Scholar 

  • Ostfeld RS, Keesing F (2000) Pulsed resources and community dynamics in terrestrial ecosystems. Trends Ecol Evol 15:232–237. doi:10.1016/S0169-5347(00)01862-0

    Article  CAS  PubMed  Google Scholar 

  • Parkinson RA, Dias K-R, Horswell J, Greenwood P, Banning N, Tibbett M, Vass AA (2009) Microbial community analysis of human decomposition on soil. In: Ritz K, Dawson L, Miller D (eds) Criminal and environmental soil forensics. Springer, Netherlands, pp 379–394

    Chapter  Google Scholar 

  • Parmenter RR, MacMahon JA (2009) Carrion decomposition and nutrient cycling in a semiarid shrub-steppe ecosystem. Ecol Monogr 79:637–661. doi:10.1890/08-0972.1

    Article  Google Scholar 

  • Pascoal C, Cássio F (2004) Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Appl Environ Microbiol 70:5266–5273. doi:10.1128/AEM.70.9.5266-5273.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316

    Article  Google Scholar 

  • Putman RJ (1983) Carrion and dung: the decomposition of animal wastes. The Institute of Biology’s Studies in Biology no. 165. Edward Arnold Ltd, London

  • Sabo JL, Power ME (2002) River-watershed exchange: effects of riverine subsidies on riparian lizards and their terrestrial prey. Ecology 83:1860–1869. doi:10.1890/0012-9658(2002)083[1860:RWEEOR]2.0.CO;2

    Google Scholar 

  • Sagara N (1992) Experimental disturbances and epigeous fungi. In: Carroll GC, Wicklow DT (eds) The fungal community: its organisation and role in the ecosystem. Marcel Dekker Inc, New York, pp 427–454

    Google Scholar 

  • Shurin JB, Gruner DS, Hillebrand H (2006) All wet or dried up? Real differences between aquatic and terrestrial food webs. Proc Biol Sci 273:1–9. doi:10.1098/rspb.2005.3377

    Article  PubMed  Google Scholar 

  • Sousa R, Guilhermino L, Antunes C (2005) Molluscan fauna in the freshwater tidal area of the River Minho estuary, NW of Iberian Peninsula. Ann Limnol 41:141–147. doi:10.1051/limn/2005009

    Article  Google Scholar 

  • Sousa R, Antunes C, Guilhermino L (2007) Species composition and monthly variation of the Molluscan fauna in the freshwater subtidal area of the River Minho estuary. Estuar Coast Shelf Sci 75:90–100. doi:10.1016/j.ecss.2007.02.020

    Article  Google Scholar 

  • Sousa R, Dias S, Freitas V, Antunes C (2008a) Subtidal macrozoobenthic assemblages along the River Minho estuarine gradient (north-west Iberian Peninsula). Aquat Conserv 18:1063–1077. doi:10.1002/aqc.871

    Article  Google Scholar 

  • Sousa R, Dias S, Guilhermino L, Antunes C (2008b) Minho River tidal freshwater wetlands: threats to faunal biodiversity. Aquat Biol 3:237–250. doi:10.3354/ab00077

    Article  Google Scholar 

  • Sousa R, Rufino M, Gaspar M, Antunes C, Guilhermino L (2008c) Abiotic impacts on spatial and temporal distribution of Corbicula fluminea (Müller, 1774) in the River Minho Estuary, Portugal. Aquat Conserv 18:98–110. doi:10.1002/aqc.838

    Article  Google Scholar 

  • Sousa R, Varandas S, Cortes R, Teixeira A, Lopes-Lima M, Machado J, Guilhermino L (2012) Massive die-offs of freshwater bivalves as resource pulses. Ann Limnol 48:105–112. doi:10.1051/limn/2012003

    Article  Google Scholar 

  • Sousa R, Novais A, Costa R, Strayer DL (2014) Invasive bivalves in fresh waters: impacts from individuals to ecosystems and possible control strategies. Hydrobiologia 735:233–251. doi:10.1007/s10750-012-1409-1

    Article  Google Scholar 

  • Spann N, Harper EM, Aldridge DC (2010) The unusual mineral vaterite in shells of the freshwater bivalve Corbicula fluminea from the UK. Naturwissenschaften 97:743–751. doi:10.1007/s00114-010-0692-9

    Article  CAS  PubMed  Google Scholar 

  • Stokes KL, Forbes SL, Benninger LA, Carter DO, Tibbett M (2009) Decomposition studies using animal models in contrasting environments: evidence from temporal changes in soil chemistry and microbial activity. In: Ritz K, Dawson L, Miller D (eds) Criminal and environmental soil forensics. Springer, New York, pp 357–377

    Chapter  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell, Oxford

    Google Scholar 

  • Tibbett M, Carter DO (2003) Mushrooms and taphonomy: the fungi that mark woodland graves. Mycologist 17:20–24. doi:10.1017/S0269915X03001150

    Article  Google Scholar 

  • Towne EG (2000) Prairie vegetation and soil nutrient responses to ungulate carcasses. Oecologia 122:232–239. doi:10.1007/PL00008851

    Article  CAS  PubMed  Google Scholar 

  • Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton Univ. Press, Princeton

    Google Scholar 

  • Wilson EE, Wolkovich EM (2011) Scavenging: how carnivores and carrion structure communities. Trends Ecol Evol 26:129–135. doi:10.1016/j.tree.2010.12.011

    Article  PubMed  Google Scholar 

  • Woff JO (1996) Population fluctuations of mast-eating rodents are correlated with production of acorns. J Mammal 77:850–856. doi:10.2307/1382690

    Article  Google Scholar 

  • Woff A, Hershey A (1999) Effects of salmon carcass decomposition on biofilm growth and wood decomposition. Can J Fish Aquat Sci 56:767–773. doi:10.1139/f99-030

    Article  Google Scholar 

  • Yamanaka T (1995a) Changes in organic matter composition of forest soil treated with a large amount of urea to promote ammonia fungi and the abilities of these fungi to decompose organic matter. Mycoscience 36:17–23. doi:10.1007/BF02268568

    Article  Google Scholar 

  • Yamanaka T (1995b) Nitrification in a Japanese red pine forest soil treated with a large amount of urea. J Jpn Forest Soc 77:232–238

    Google Scholar 

  • Yanai S, Kochi K (2005) Effects of salmon carcasses on experimental stream ecosystems in Hokkaido, Japan. Ecol Res 20:471–480. doi:10.1007/s11284-005-0056-7

    Article  Google Scholar 

  • Yang LH (2004) Periodical cicadas as resource pulses in North American forests. Science 306:1565–1567. doi:10.1126/science.1103114

    Article  CAS  PubMed  Google Scholar 

  • Yang LH (2008) Pulses of dead periodical cicadas increase herbivory of American bellflowers. Ecology 89:1497–1502. doi:10.1890/07-1853.1

    Article  PubMed  Google Scholar 

  • Yang LH, Bastow JL, Spence KO, Wright AN (2008) What can we learn from resource pulses? Ecology 89:621–634. doi:10.1890/07-0175.1

    Article  PubMed  Google Scholar 

  • Yang LH, Edwards KF, Byrnes JE, Bastow JL, Wright AN, Spence KO (2010) A meta-analysis of resource pulse-consumer interactions. Ecol Monogr 80:125–151. doi:10.1890/08-1996.1

    Article  Google Scholar 

Download references

Acknowledgements

Adriana Novais was supported by a Ph.D. Grant (SFRH/BD/86463/2012) from the Portuguese Foundation for Science and Technology (FCT) through POPH/FSE funds. The study was supported by (1) the project ECO-IAS: Ecosystem-level impacts of an invasive alien species funded by the FCT and COMPETE funds (PTDC/AAC-AMB/116685/2010), and (2) the strategic program UID/BIA/04050/2013 (POCI-01-0145-FEDER-007569) funded by national funds through the FCT I.P. and the ERDF through the COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI). Authors thank the anonymous reviewers for valuable suggestions, which contributed to improve the manuscript; Cristiana Araújo, Maria José Araújo and Maria Luis Miranda for their help on experimental setup; Ester Dias and William McDowell for their help on one sampling campaign, and Martina Ilarri for help on statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Novais.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Mean (± SEM) of organic C and total N (%), NH4 +, NO2 , NO3 , PO4 3−, Ca and K (mg kg−1) and two-way PERMANOVA results at different densities of C. fluminea (0, 100, 500, 1000 and 2000 ind. m−2) and sampling times (7, 30 and 90 days) and their interaction term. * = p < 0.05; ns = non-significant (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novais, A., Pascoal, C. & Sousa, R. Effects of invasive aquatic carrion on soil chemistry and terrestrial microbial communities. Biol Invasions 19, 2491–2502 (2017). https://doi.org/10.1007/s10530-017-1459-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-017-1459-4

Keywords

Navigation