Skip to main content

Advertisement

Log in

Signatures of invasion: using an integrative approach to infer the spread of melon fly, Zeugodacus cucurbitae (Diptera: Tephritidae), across Southeast Asia and the West Pacific

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Invasion into new areas by already widespread pest organisms often occurs through non-obvious routes, with the origins of such invasions difficult to determine. Understanding population structure using multiple datatypes can help untangle past dispersal events and reveal putative contemporary invasion pathways. The tephritid fruit fly, Zeugodacus cucurbitae (Coquillett), is a serious pest of cucurbits and other commercial crops and is considered native to the Indo-Oriental region, but is invasive in both Africa and the Pacific. Here, we combine molecular (microsatellites and COI) and morphological (male genetalia length and wing shape geometric morphometrics) data within an integrative taxonomic framework to test hypotheses concerning levels of Z. cucurbitae population variation observed in Southeast Asia (native range, 10 sites, ~200 individuals) versus the West Pacific (invasive range, 4 sites, ~80 individuals), and whether single or multiple introductions of Z. cucurbitae have occurred into the West Pacific. We also use this case to explicitly test if using an integrative approach provides more information about hypothesized invasion pathways than either genetic or morphological approaches would do alone. All datasets support Z. cucurbitae as being more variable in Southeast Asia than the West Pacific, and within these regions populations appear to be structured geographically. In particular, mainland and Sundaic Southeast Asian locations formed separate clusters, and New Guinea and Solomon Islands were not closely related to Guam and Hawaii. Evidence supports a separate single origin for New Guinea from the Melanesian arc, the Solomon Islands from Malaysia/Singapore, and Guam from mainland Asia, but multiple introductions into Hawaii from mainland Asia. Taken together, we argue that there is great value in integrating evidence from multiple sources as it can provide finer resolution of population relationships than any single data source alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aketarawong N, Guglielmino CR, Karam N, Falchetto M, Manni M, Scolari F, Gomulski LM, Gasperi G, Malacrida AR (2014) The oriental fruit fly Bactrocera dorsalis s.s. in East Asia: disentangling the different forces promoting the invasion and shaping the genetic make-up of populations. Genetica 142:201–213

    PubMed  CAS  Google Scholar 

  • Allwood AJ, Drew RAI (1996) Management of fruit flies in the Pacific. In: ACIAR proceedings no. 76. ACIAR, Canberra, Australia

  • Allwood AJ, Chinajariyawong A, Drew RAI, Hamacek EL, Hancock DL, Hengsawad C, Jinapin JC, Jirasurat M, Kong Krong C, Kritsaneepaiboon S, Leong CTS, Vijaysegaran S (1999) Host plant records for fruit flies (Diptera: Tephritidae) in Southeast Asia. Raffles Bull Zool 7:1–92

    Google Scholar 

  • Aytekin MA, Terzo M, Rasmont P, Çağatay N (2007) Landmark based geometric morphometric analysis of wing shape in Sibiricobombus Vogt (Hymenoptera: Apidae: Bombus Latreille). Ann Soc Entomol Fr 43:95–102

    Google Scholar 

  • Back EA, Pemberton CE (1917) The melon fly in Hawaii. USDA Bull 491:1–64

    Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    PubMed  CAS  Google Scholar 

  • Barr NB (2009) Pathway analysis of Ceratitis capitata (Diptera: Tephritidae) using mitochondrial DNA. J Econ Entomol 102:401–411

    PubMed  CAS  Google Scholar 

  • Barr NB, Ledezma LA, Leblanc L, San Jose M, Rubinoff D, Geib SM, Fujita B, Bartels DW, Garza D, Kerr P, Hauser M (2014) Genetic diversity of Bactrocera dorsalis (Diptera: Tephritidae) on the Hawaiian Islands: implications for an introduction pathway into California. J Econ Entomol 107:1946–1958

    PubMed  CAS  Google Scholar 

  • Bess HA, Van Den Bosch R, Haramoto FH (1961) Fruit fly parasites and their activities in Hawaii. Proc Hawaii Entomol Soc 17:367–378

    Google Scholar 

  • Bezzi M (1913) Indian Tephritids (fruit flies) in the collection of the Indian Museum, Calcutta. Mem Indian Mus 3:153–175

    Google Scholar 

  • Bookstein FL (1991) Morphometric tools for landmark data: geometry and biology. New York, Cambridge University Press

    Google Scholar 

  • Boontop Y (2016) Natural variation and biogeography of the melon fruit fly, Zeugodacus cucurbitae (Diptera: Tephritidae), in Southeast-Asia and the West-Pacific. Ph.D. dissertation, Queensland University of Technology

  • Bouyer J, Ravel S, Dujardin JP, De Meeüs T, Vial L, Thévenon S, Guerrini L, Sidibe I, Solano P (2007) Population structuring of Glossina palpalis gambiensis (Diptera: Glossinidae) according to landscape fragmentation in the Mouhoun river, Burkina Faso. J Med Entomol 44:788–795

    PubMed  CAS  Google Scholar 

  • Cáceres C, Segura DF, Vera MT, Wornoayporn V, Cladera JL, Teal P, Sapountzis P, Bourtzis K, Zacharopoulou A, Robinson A (2009) Incipient speciation revealed in Anastrepha fraterculus (Diptera; Tephritidae) by studies on mating compatibility, sex pheromones, hybridization, and cytology. Biol J Linn Soc 97:152–165

    Google Scholar 

  • Cameron EK, Bayne EM, Coltman DW (2008) Genetic structure of invasive earthworms Dendrobaena octaedra in the boreal forest of Alberta: insights into introduction mechanisms. Mol Ecol 17:1189–1197

    PubMed  CAS  Google Scholar 

  • Clarke AR, Allwood A, Chinajariyawong A, Drew RAI, Hengsawad C, Jirasurat M, Krong CK, Kritsaneepaiboon S, Vijaysegaran S (2001) Seasonal abundance and host use patterns of seven Bactrocera Macquart species (Diptera: Tephritidae) in Thailand and Peninsular Malaysia. Raffles B Zool 49:207–220

    Google Scholar 

  • Clarke AR, Armstrong KF, Carmichael AE, Milne JR, Raghu S, Roderick GK, Yeates DK (2005) Invasive phytophagous pests arising through a recent tropical evolutionary radiation: the Bactrocera dorsalis complex of fruit flies. Ann Rev Entomol 50:293–319

    CAS  Google Scholar 

  • Cornuet J-M, Pudlo P, Veyssier J, Dehne-Garcia A, Gautier M, Leblois R, Marin J-M, Estoup A (2014) DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30:1187–1189

    PubMed  CAS  Google Scholar 

  • Dayrat B (2005) Towards integrative taxonomy. Biol J Linn Soc 85:407–415

    Google Scholar 

  • De Bruyn M, Nugroho E, Hossain MM, Wilson JC, Mather PB (2005) Phylogeographic evidence for the existence of an ancient biogeographic barrier: the Isthmus of Kra Seaway. Heredity 94:370–378

    PubMed  Google Scholar 

  • De Meyer M, Robertson MP, Peterson AT, Mansell MW (2008) Ecological niches and potential geographical distributions of Mediterranean fruit fly (Ceratitis capitata) and Natal fruit fly (Ceratitis rosa). J Biogeogr 35:270–281

    Google Scholar 

  • De Meyer M, Delatte H, Ekesi S, Jordaens K, Kalinova B, Manrakan A, Mwatawala M, Steck G, Van Cann J, Vanickova L, Brizova R, Virgilio M (2015a) An integrative approach to unravel the Ceratitis FAR (Diptera, Tephritidae) cryptic species complex: a review. ZooKeys 540:405–427

    Google Scholar 

  • De Meyer M, Delatte H, Mwatawala M, Quilici S, Vayssieres JF, Virgilio M (2015b) A review of the current knowledge on Zeugodacus cucurbitae (Coquillett) (Diptera, Tephritidae) in Africa, with a list of species included in Zeugodacus. ZooKeys 540:539–557

    Google Scholar 

  • De Villiers M, Hattingh V, Kriticos DJ, Brunel S, Vayssières J-F, Sinzogan A, Billah MK, Mohamed SA, Mwatawala M, Abdelgader H, Salah FEE, De Meyer M (2016) The potential distribution of Bactrocera dorsalis: considering phenology and irrigation patterns. B Entomol Res 106:19–33

    Google Scholar 

  • Delatte H, Virgilio M, Simiand C, Risterucci AM, De Meyer M, Quilici S (2010) Isolation and characterization of microsatellite markers from Bactrocera cucurbitae (Coquillett). Mol Ecol Resour 10:576–579

    PubMed  Google Scholar 

  • Dhillon MK, Singh R, Naresh JS, Sharma HC (2005) The melon fruit fly, Bactrocera cucurbitae: a review of its biology and management. J Insect Sci 5:40

    PubMed  PubMed Central  CAS  Google Scholar 

  • Drake AG, Klingenberg CP (2008) The pace of morphological change: historical transformation of skull shape in St. Bernard dogs. Proc R Soc Lond B Biol 275:71–76

    Google Scholar 

  • Drew RAI, Hancock DL (2000) Phylogeny of the tribe Dacini (Dacinae) based on morphological, distributional, and biological data. In: Aluja M, Norrbom AL (eds) Fruit flies (Tephritidae): phylogeny and evolution of Behavior. CRC Press, New York, pp 491–504

    Google Scholar 

  • Drew RAI, Romig MC (2013) Tropical fruit flies (Tephritidae Dacinae) of South-East Asia: Indomalaya to North-West Australasia. CABI, Wallingford

    Google Scholar 

  • Duyck PF, David P, Quilici S (2004) A review of relationships between interspecific competition and invasions in fruit flies (Diptera: Tephritidae). Ecol Entomol 29:511–520

    Google Scholar 

  • Earl DA, vonHoldt BM (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Google Scholar 

  • Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19:4113–4130

    PubMed  Google Scholar 

  • Eta CR (1985) Eradication of the melon fly from Shortland Islands, Western Province, Solomon Islands (special report). Solomon Islands Agricultural Quarantine Service, Annual Report. Ministry of Agriculture and Lands, Honiara, pp 14–23

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolut Bioinform 1:47

    CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  PubMed Central  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    PubMed  PubMed Central  CAS  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    PubMed  CAS  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gilchrist AS, Crisafulli DCA (2006) Using variation in wing shape to distinguish between wild and mass-reared individuals of Queensland fruit fly, Bactrocera tryoni. Entomol Exp Appl 119:175–178

    Google Scholar 

  • Glaubitz JC (2004) Convert: a user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol Ecol Notes 4:309–310

    CAS  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Lausanne University, Lausanne, Switzerland. http://www2.unil.ch/popgen/softwares/fstat.htm

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hu J, Zhang JL, Nardi F, Zhang RJ (2008) Population genetic structure of the melon fly, Bactrocera cucurbitae (Diptera: Tephritidae), from China and Southeast Asia. Genetica 134:319–324

    PubMed  Google Scholar 

  • Iwaizumi R, Kaneda M, Iwahashi O (1997) Correlation of length of terminalia of males and females among nine species of Bactrocera (Diptera, Tephritidae) and differences among sympatric species of B. dorsalis complex. Ann Entomol Soc Am 90:664–666

    Google Scholar 

  • Jackson CG, Vargas RI, Suda DY (2003) Populations of Bactrocera cucurbitae (Diptera: Tephritidae) and its parasitoid, Psyttalia fletcheri (Hymenoptera: Braconidae) in Coccinia grandis (Cucurbitaceae) or ivy gourd on the island of Hawaii. Proc Hawaii Entomol Soc 36:39–46

    Google Scholar 

  • Jacquard C, Virgilio M, David P, Quilici S, De Meyer M, Delatte H (2013) Population structure of the melon fly, Bactrocera cucurbitae, in Reunion Island. Biol Invasions 15:759–773

    Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    PubMed  CAS  Google Scholar 

  • Jiang F, Li ZH, Deng YL, Wu JJ, Liu RS, Buahom N (2013) Rapid diagnosis of the economically important fruit fly, Bactrocera correcta (Diptera: Tephritidae) based on a species-specific barcoding cytochrome oxidase I marker. Bull Entomol Res 103:363–371

    PubMed  CAS  Google Scholar 

  • Jiang F, Jin Q, Liang L, Zhang AB, Li ZH (2014) Existence of species complex largely reduced barcoding success for invasive species of Tephritidae: a case study in Bactrocera spp. Mol Ecol Resour 14:1114–1128

    PubMed  CAS  Google Scholar 

  • Johannesen J, Keyghobadi N, Schuler H, Stauffer C, Vogt H (2013) Invasion genetics of American cherry fruit fly in Europe and signals of hybridization with the European cherry fruit fly. Entomol Exp Appl 147:61–72

    CAS  Google Scholar 

  • Khamis FM, Masiga DK, Mohamed SA, Salifu D, De Meyer M, Ekesi S (2012) Taxonomic identity of the invasive fruit fly pest, Bactrocera invadens: concordance in morphometry and DNA barcoding. PLoS ONE 7:e44862

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kitthawee S, Rungsri N (2011) Differentiation in wing shape in the Bactrocera tau (Walker) complex on a single fruit species in Thailand. Sci Asia 37:308–313

    Google Scholar 

  • Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357

    PubMed  Google Scholar 

  • Krosch MN, Schutze MK, Armstrong KF, Boontop Y, Boykin LM, Chapman TA, Englezou A, Cameron SL, Clarke AR (2013) Piecing together an integrative taxonomic puzzle: microsatellite, wing shape and aedeagus length analyses of Bactrocera dorsalis s.l. (Diptera: Tephritidae) find no evidence of multiple lineages in a proposed contact zone along the Thai/Malay Peninsula. Syst Entomol 38:2–13

    Google Scholar 

  • Lecocq T, Dellicour S, Michez D, Dehon M, Dewulf A, De Meulemeester T, Brasero N, Valterova I, Rasplus J-Y, Rasmont P (2015) Methods for species delimitation in bumblebees (Hymenoptera, Apidae, Bombus): towards an integrative approach. Zool Scr 44:281–297

    Google Scholar 

  • Levine JM (2008) Biological invasions. Curr Biol 18:R57–R60

    PubMed  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    CAS  PubMed  Google Scholar 

  • Malacrida AR, Gomulski LM, Bonizzoni M, Bertin S, Gasperi G, Guglielmino CR (2007) Globalization and fruitfly invasion and expansion: the medfly paradigm. Genetica 131:1–9

    PubMed  CAS  Google Scholar 

  • Meirmans PG (2015) Seven common mistakes in population genetics and how to avoid them. Mol Ecol 24:3223–3231

    PubMed  Google Scholar 

  • Meixner MD, McPheron BA, Silva JG, Gasparich GE, Sheppard WS (2002) The Mediterranean fruit fly in California: evidence for multiple introductions and persistent populations based on microsatellite and mitochondrial DNA variability. Mol Ecol 11:891–899

    PubMed  CAS  Google Scholar 

  • Nabholz B, Glémin S, Galtier N (2009) The erratic mitochondrial clock: variations of mutation rate, not population size, affect mtDNA diversity across birds and mammals. BMC Evol Biol 9:54

    PubMed  PubMed Central  Google Scholar 

  • Nardi F, Carapelli A, Dallai R, Roderick GK, Frati F (2005) Population structure and colonization history of the olive fly, Bactrocera oleae (Diptera, Tephritidae). Mol Ecol 14:2729–2738

    PubMed  CAS  Google Scholar 

  • Palumbi SR, Grabowsky G, Duda T, Geyer L, Tachino N (1997) Speciation and population genetic structure in tropical Pacific sea urchins. Evolution 51:1506–1517

    PubMed  Google Scholar 

  • Park SDE (2001) Trypanotolerance in West African cattle and the population genetic effects of selection. Ph.D. dissertation, University of Dublin

  • Pimentel D (2011) Biological invasions: economic and environmental costs of alien plant, animal, and microbe species. CRC Press, New York

    Google Scholar 

  • Prabhakar CS, Mehta PK, Sood P, Singh SK, Sharma P, Sharma PN (2012) Population genetic structure of the melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) based on mitochondrial cytochrome oxidase (COI) gene sequences. Genetica 140:83–91

    PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnely P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  PubMed Central  CAS  Google Scholar 

  • Puillandre N, Dupas S, Dangles O, Zeddam JL, Capdevielle-Dulac C, Barbin K, Torres-Leguizamon M, Silvain JF (2008) Genetic bottleneck in invasive species: the potato tuber moth adds to the list. Biol Invasions 10:319–333

    Google Scholar 

  • Putulan D, Sar S, Drew RA, Raghu S, Clarke AR (2004) Fruit and vegetable movement on domestic flights in Papua New Guinea and the risk of spreading pest fruit-flies (Diptera: Tephritidae). Int J Pest Manag 50:17–22

    Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    PubMed  Google Scholar 

  • Roderick GK, Howarth FG (1997) Invasion genetics: natural colonizations, exotic pests, and classical biological control. In: Miyazaki M, Andow D (eds) Biological invasions of ecosystems by pests and beneficial organisms. National Institute of Agro-Environmental Sciences, Tsukuba, pp 349–357

    Google Scholar 

  • Rohlf FJ (1999) Shape statistics: procrustes superimpositions and tangent spaces. J Classif 16:197–223

    Google Scholar 

  • Rohlf FJ (2013) tpsDig, digitize landmarks and outlines. Department of Ecology and Evolution, State University of New York at Stony Brook, NY, USA. http://life.bio.sunysb.edu/morph/

  • Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Google Scholar 

  • Scheffer SJ, Grissell EE (2003) Tracing the geographical origin of Megastigmus transvaalensis (Hymenoptera: Torymidae): an African wasp feeding on a South American plant in North America. Mol Ecol 12:415–421

    PubMed  Google Scholar 

  • Schlick-Steiner BC, Steiner FM, Seifert B, Stauffer C, Christian E, Crozier RH (2010) Integrative taxonomy: a multisource approach to exploring biodiversity. Ann Rev Entomol 55:421–438

    CAS  Google Scholar 

  • Schrag S, Wiener P (1995) Emerging infectious disease: what are the relative roles of ecology and evolution? Trends Ecol Evol 10:319–324

    PubMed  CAS  Google Scholar 

  • Schutze MK, Krosch MN, Armstrong KF, Chapman TA, Englezou A, Chomič A, Cameron SL, Hailstones D, Clarke AR (2012a) Population structure of Bactrocera dorsalis s.s., B. papayae and B. philippinensis (Diptera: Tephritidae) in Southeast Asia: evidence for a single species hypothesis using mitochondrial DNA and wing-shape data. BMC Evol Biol 12:130

    PubMed  PubMed Central  Google Scholar 

  • Schutze MK, Jessup A, Clarke AR (2012b) Wing shape as a potential discriminator of morphologically similar pest taxa within the Bactrocera dorsalis species complex (Diptera: Tephritidae). Bull Entomol Res 102:103–111

    PubMed  CAS  Google Scholar 

  • Schutze MK, Mahmood K, Pavasovic A, Bo W, Newman J, Clarke AR, Krosch MN, Cameron SL (2015a) One and the same: integrative taxonomic evidence that Bactrocera invadens (Diptera: Tephritidae) is the same species as the Oriental fruit fly Bactrocera dorsalis. Syst Entomol 40:472–486

    Google Scholar 

  • Schutze MK, Aketarawong N, Amornsak W, Armstrong KF, Augustinos AA, Barr N, Bo W, Bourtzis K, Boykin LM, Cáceres C, Cameron SL, Chapman TA, Chinvinijkul S, Chomič A, De Meyer M, Drosopoulou E, Englezou A, Ekesi S, Gariou-Papalexiou A, Geib SM, Hailstones D, Hasanuzzaman M, Haymer D, Hee AKW, Hendrichs J, Jessup A, Ji Q, Khamis FM, Krosch MN, Leblanc L, Mahmood K, Malacrida AR, Mavragani-Tsipidou P, Mwatawala M, Nishida R, Ono H, Reyes J, Rubinoff D, San Jose M, Shelly TE, Srikachar S, Tan KH, Thanaphum S, Ul-Haq I, Vijaysegaran S, Wee SL, Yesmin F, Zacharopoulou A, Clarke AR (2015b) Synonymization of key pest species within the Bactrocera dorsalis species complex (Diptera: Tephritidae): taxonomic changes based on a review of 20 years of integrative morphological, molecular, cytogenetic, behavioural and chemoecological data. Syst Entomol 40:456–471

    Google Scholar 

  • Severin HHP, Severin MA, Hartung WJ (1914) The ravages, life history, weights of stages, natural enemies, and methods of control of the melon fly (Dacus cucurbitae). Ann Entomol Soc Am 7:177–207

    Google Scholar 

  • Sh W, Kerdelhué C, Ye H (2014) Genetic structure and colonization history of the fruit fly Bactrocera tau (Diptera: Tephritidae) in China and Southeast Asia. J Econ Entomol 107:1256–1265

    Google Scholar 

  • Sved JA, Yu H, Dominiak B, Gilchrist AS (2003) Inferring modes of colonization for pest species using heterozygosity comparisons and a shared-allele test. Genetics 163:823–831

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tajima F (1993) Measurement of DNA polymorphism. In: Takahata N, Clark AG (eds) Mechanisms of molecular evolution. Introduction to molecular paleopopulation biology. Sinauer Associates, Sunderland, pp 37–59

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetic analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    PubMed  CAS  Google Scholar 

  • Tsutsui ND, Suarez AV, Holway DA, Case TJ (2001) Relationships among native and introduced populations of the Argentine ant (Linepithema humile) and the source of introduced populations. Mol Ecol 10:2151–2161

    PubMed  CAS  Google Scholar 

  • Vargas RI, Stark JD, Nishida T (1989) Abundance, distribution, and dispersion indices of the oriental fruit fly and melon fly (Diptera: Tephritidae) on Kauai, Hawaiian Islands. J Econ Entomol 82:1609–1615

    Google Scholar 

  • Vargas RI, Long J, Miller NW, Delate K, Jackson CG, Uchida GK, Bautista RC, Harris EJ (2004) Releases of Psyttalia fletcheri (Hymenoptera: Braconidae) and sterile flies to suppress melon fly (Diptera: Tephritidae) in Hawaii. J Econ Entomol 97:1531–1539

    PubMed  Google Scholar 

  • Vargas RI, Piñero JC, Leblanc L (2015) An overview of pest species of Bactrocera fruit flies (Diptera: Tephritidae) and the integration of biopesticides with other biological approaches for their management with a focus on the Pacific region. Insects 6:297–318

    PubMed  PubMed Central  Google Scholar 

  • Virgilio M, Delatte H, Backeljau T, De Meyer M (2010) Macrogeographic population structuring in the cosmopolitan agricultural pest Bactrocera cucurbitae (Diptera: Tephritidae). Mol Ecol 19:2713–2724

    PubMed  CAS  Google Scholar 

  • Virgilio M, Jordaens K, Breman FC, Backeljau T, De Meyer M (2012) Identifying insects with incomplete DNA barcode libraries, African Fruit flies (Diptera: Tephritidae) as a test case. PLoS ONE 7:e31581

    PubMed  PubMed Central  CAS  Google Scholar 

  • Waterhouse DF (1993) The major arthropod pests and weeds of agriculture in Southeast Asia. ACIAR, Canberra

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    PubMed  CAS  Google Scholar 

  • White IM, Elson-Harris MM (1992) Fruit Flies of Economic Significance: their identification and bionomics. ACIAR/CAB International, Wallingford

    Google Scholar 

  • Wilson JJ (2012) DNA barcodes for insects. Methods Mol Biol 858:17–46

    PubMed  CAS  Google Scholar 

  • Woodruff D (2003) Neogene marine transgressions, palaeogeography and biogeographic transitions on the Thai–Malay Peninsula. J Biogeogr 30:551–567

    Google Scholar 

  • Woodruff DS (2010) Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity. Biodivers Conserv 19:919–941

    Google Scholar 

  • Wu Y, Li ZH, Wu JJ (2009) Polymorphic microsatellite markers in the Melon fruit fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). Mol Ecol Resour 9:1404–1406

    PubMed  Google Scholar 

  • Wu Y, Li Y, Ruiz-Arce R, McPheron B, Wu J, Li Z (2011) Microsatellite markers reveal population structure and low gene flow among collections of Bactrocera cucurbitae (Diptera: Tephritidae) in Asia. J Econ Entomol 104:1065–1074

    PubMed  Google Scholar 

  • Zelditch ML, Swiderski DL, Sheets HD (2012) Geometric morphometrics for biologists: a primer. Academic Press, Sydney

    Google Scholar 

  • Zhang B, Edwards OR, Kang L, Fuller SJ (2012) Russian wheat aphids (Diuraphis noxia) in China: native range expansion or recent introduction? Mol Ecol 21:2130–2144

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

YB was supported by a Royal Thai Government Scholarship. Research support for this study came from Consultancy Agreement 2012-SPSCPB-80655-DNABCPFF provided by the Australian Government Department of Agriculture, Fisheries and Forestry, through the support of Dr Ian Naumann. SLC was supported by the Australian Research Council (FT120100746). The data reported in this paper were obtained at the Central Analytical Research Facility operated by the Institute for Future Environments (QUT). Access to CARF is supported by generous funding from the Science and Engineering Faculty (QUT).The authors thank the Molecular Genetics Research Facility (QUT), Vincent Chand, and Dr. Litticia Bryant for laboratory assistance. We greatly acknowledge the following colleagues for assistance with field collections: Mr Am Phirum (Cambodia); Dr Suthana Ketmaro, Mrs Sirinee Poonchaisri, Miss Sunadda Chaovalit and Miss Chamaiporn Buamas (Thailand); Mr Francis Tsatsia (Solomon Islands); Mr He Liansheng and Ms Jenny Yap (Singapore); Dr Mark Ero (PNG); Mr Musa Mubah and Ms Suhana Yusof (Malaysia); Dr Pyone Pyone Kyi (Myanmar); Mr Rhodjz Orqui (Philippines); Dr Russell Campbell (Guam); Dr Todd Shelly (U.S.A.); Mr Yosef Rumbino (Indonesia); Dr Duong Minh Tu and Dr Dam Ngoc Han (Vietnam); and Dr Vijay Vijaysegaran (Australia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt N. Krosch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 83 kb)

Supplementary Figure 1

Scenarios of population relationships tested using DIYABC analysis. Populations were collapsed into six groups: mainland Southeast Asia (mSA: mainland Southeast Asia; M + S: Malaysia + Singapore; aSA: archipelagic Southeast Asia; NG: New Guinea; Sol: Solomon Islands; G + H: Guam + Hawaii) (TIFF 649 kb)

Supplementary Figure 2

Plots of scenario posterior probabilities under both the direct and logistic regression methods (TIFF 428 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boontop, Y., Schutze, M.K., Clarke, A.R. et al. Signatures of invasion: using an integrative approach to infer the spread of melon fly, Zeugodacus cucurbitae (Diptera: Tephritidae), across Southeast Asia and the West Pacific. Biol Invasions 19, 1597–1619 (2017). https://doi.org/10.1007/s10530-017-1382-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-017-1382-8

Keywords

Navigation