Skip to main content
Log in

How propagule size and environmental suitability jointly determine establishment success: a test using dung beetle introductions

  • Insect Invasions
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Both the size of founding populations (propagule size) and environmental suitability are known to influence whether a species newly introduced to a location will establish a self-sustaining population. However, these two factors do not operate independently: it is the interaction between propagule size and environmental suitability that determines the probability an introduced population will establish. Here I use the example of dung beetle introductions to Australia to illustrate the importance of this interaction. I first describe equations that model establishment success jointly as a function of propagule size and environmental suitability. I then show how these equations provide insight into the different outcomes observed in two dung beetle species widely introduced to Australia. In one species, variation in propagule size had relatively little influence on establishment success due to large variation in environmental suitability, leading to an essentially bimodal outcome: sites were either very suitable for establishment and introductions succeeded, or sites were unsuitable and introductions failed regardless of propagule size. For the second species, there was much less variation among locations in environmental suitability, leading to propagule size having a strong influence on establishment success. These examples highlight how the interplay between environmental suitability and founding population size is central to determining the probability an introduced species will establish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Araujo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species–climate impact models under climate change. Glob Change Biol 11:1504–1513. doi:10.1111/j.1365-2486.2005.001000.x

    Article  Google Scholar 

  • Beirne BP (1985) Avoidable obstacles to colonization in classical biological control of insects. Can J Zool 63:743–747

    Article  Google Scholar 

  • Blackburn TM, Duncan RP (2001) Determinants of establishment success in introduced birds. Nature 414:195–197

    Article  CAS  PubMed  Google Scholar 

  • Bradie J, Chivers C, Leung B (2013) Importing risk: quantifying the propagule pressure-establishment relationship at the pathway level. Divers Distrib 19:1020–1030. doi:10.1111/ddi.12081

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2001) Kullback–Leibler information as a basis for strong inference in ecological studies. Wildl Res 28:111–119. doi:10.1071/WR99107

    Article  Google Scholar 

  • Cassey P, Blackburn TM, Duncan RP, Lockwood JL (2005) Lessons from the establishment of exotic species: a meta-analytical case study using birds. J Anim Ecol 74:250–258

    Article  Google Scholar 

  • Courchamp F, Berec L, Gascoigne J (2008) Allee effects in ecology and conservation. Oxford University Press, Oxford

    Book  Google Scholar 

  • D’Antonio C, Levine JM, Thomsen MA (2001) Ecosystem resistance to invasion and the role of propagule supply: a California perspective. J Mediterr Ecol 2:233–245

    Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534

    Article  Google Scholar 

  • Dennis B (2002) Allee effects in stochastic populations. Oikos 96:389–401. doi:10.1034/j.1600-0706.2002.960301.x

    Article  Google Scholar 

  • Duncan RP, Cassey P, Blackburn TM (2009) Do climate envelope models transfer? A manipulative test using dung beetle introductions. Proc R Soc Lond Ser B 267:1449–1457

    Article  Google Scholar 

  • Duncan RP, Blackburn TM, Rossinelli S, Bacher S (2014) Quantifying invasion risk: the relationship between establishment probability and founding population size. Methods Ecol Evol 5:1255–1263. doi:10.1111/2041-210X.12288

    Article  Google Scholar 

  • Eschtruth AK, Battles JJ (2011) The importance of quantifying propagule pressure to understand invasion: an examination of riparian forest invasibility. Ecology 92:1314–1322

    Article  PubMed  Google Scholar 

  • Fauvergue X, Vercken E, Malausa T, Hufbauer RA (2012) The biology of small, introduced populations, with special reference to biological control. Evol Appl 5:424–443. doi:10.1111/j.1752-4571.2012.00272.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrari SLP, Cribari-Neto F (2004) Beta regression for modelling rates and proportions. J Appl Stat 31:799–815. doi:10.1080/0266476042000214501

    Article  Google Scholar 

  • Grevstad FS (1999a) Factors influencing the chance of population establishment: implications for release strategies in biocontrol. Ecol Appl 9:1439–1447

    Article  Google Scholar 

  • Grevstad FS (1999b) Experimental invasions using biological control introductions: the influence of release size on the chance of population establishment. Biol Invasions 1:313–323. doi:10.1023/A:1010037912369

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. doi:10.1111/j.1461-0248.2005.00792.x

    Article  Google Scholar 

  • Hollebone AL, Hay ME (2007) Propagule pressure of an invasive crab overwhelms native biotic resistance. Mar Ecol Prog Ser 342:191–196. doi:10.3354/meps342191

    Article  Google Scholar 

  • Hopper KR, Roush RT (1993) Mate finding, dispersal, number released, and the success of biological control introductions. Ecol Entomol 18:321–331. doi:10.1111/j.1365-2311.1993.tb01108.x

    Article  Google Scholar 

  • Hufbauer RA, Rutschmann A, Serrate B et al (2013) Role of propagule pressure in colonization success: disentangling the relative importance of demographic, genetic and habitat effects. J Evol Biol 26:1691–1699. doi:10.1111/jeb.12167

    Article  CAS  PubMed  Google Scholar 

  • Lande R (1993) Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am Nat 142:911–927

    Article  Google Scholar 

  • Leung B, Mandrak NE (2007) The risk of establishment of aquatic invasive species: joining invasibility and propagule pressure. Proc R Soc Lond Ser B 274:2603–2609. doi:10.1098/rspb.2007.0841

    Article  Google Scholar 

  • Leung B, Drake JM, Lodge DM (2004) Predicting invasions: propagule pressure and the gravity of Allee effects. Ecology 85:1651–1660. doi:10.1890/02-0571

    Article  Google Scholar 

  • Leung B, Roura-Pascual N, Bacher S et al (2012) TEASIng apart alien species risk assessments: a framework for best practices. Ecol Lett 15:1475–1493. doi:10.1111/ele.12003

    Article  PubMed  Google Scholar 

  • Lockwood JL, Cassey P, Blackburn TM (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228

    Article  PubMed  Google Scholar 

  • Memmott J, Craze PG, Harman HM et al (2005) The effect of propagule size on the invasion of an alien insect. J Anim Ecol 74:50–62. doi:10.1111/j.1365-2656.2004.00896.x

    Article  Google Scholar 

  • Miller AL, Diez JM, Sullivan JJ et al (2014) Quantifying invasion resistance: the use of recruitment functions to control for propagule pressure. Ecology 95:920–929. doi:10.1890/13-0655.1

    Article  PubMed  Google Scholar 

  • New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25. doi:10.3354/cr021001

    Article  Google Scholar 

  • Norris RJ, Memmott J, Lovell DJ (2002) The effect of rainfall on the survivorship and establishment of a biocontrol agent. J Appl Ecol 39:226–234. doi:10.1046/j.1365-2664.2002.00712.x

    Article  Google Scholar 

  • Nuñez MA, Moretti A, Simberloff D (2011) Propagule pressure hypothesis not supported by an 80-year experiment on woody species invasion. Oikos 120:1311–1316. doi:10.1111/j.1600-0706.2011.19504.x

    Article  Google Scholar 

  • Odum HT, Allee WC (1954) A note on the stable point of populations showing both intraspecific cooperation and disoperation. Ecology 35:95–97

    Article  Google Scholar 

  • Peterson AT (2003) Predicting the geography of species’ invasions via ecological niche modeling. Q Rev Biol 78:419–433. doi:10.1086/378926

    Article  PubMed  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R Development Core Team, Vienna

    Google Scholar 

  • Rejmánek M (1989) Invasability of plant communities. In: Drake JA, Mooney HA, di Castri F et al (eds) Biological invasions: a global perspective. Wiley, Chichester, pp 369–388

    Google Scholar 

  • Rouget M, Richardson DM (2003) Inferring process from pattern in plant invasions: a semimechanistic model incorporating propagule pressure and environmental factors. Am Nat 162:713–724. doi:10.1086/379204

    Article  PubMed  Google Scholar 

  • Schoener TW, Schoener A (1983) The time to extinction of a colonizing propagule of lizards increases with island area. Nature 302:332–334. doi:10.1038/302332a0

    Article  Google Scholar 

  • Shea K, Chesson PL (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176. doi:10.1016/s0169-5347(02)02495-3

    Article  Google Scholar 

  • Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst 40:81–102. doi:10.1146/annurev.ecolsys.110308.120304

    Article  Google Scholar 

  • Stephens PA, Sutherland WJ, Freckleton R (1999) What is the Allee effect? Oikos 87:185–190

    Article  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  CAS  PubMed  Google Scholar 

  • Szűcs M, Melbourne BA, Tuff T, Hufbauer RA (2014) The roles of demography and genetics in the early stages of colonization. Proc R Soc Lond Ser B 281:20141073. doi:10.1098/rspb.2014.1073

    Article  Google Scholar 

  • Taylor CM, Hastings A (2005) Allee effects in biological invasions. Ecol Lett 8:895–908. doi:10.1111/j.1461-0248.2005.00787.x

    Article  Google Scholar 

  • Thomsen MA, D’Antonio CM, Suttle KB, Sousa WP (2006) Ecological resistance, seed density and their interactions determine patterns of invasion in a California coastal grassland. Ecol Lett 9:160–170. doi:10.1111/j.1461-0248.2005.00857.x

    Article  PubMed  Google Scholar 

  • Tyndale-Biscoe M (1996) Australia’s introduced dung beetles: original releases and redistributions. Division of Entomology Technical Report no. 62. Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia

  • Von Holle B, Simberloff D (2005) Ecological reistance to biological invasion overwhelmed by propagule pressure. Ecology 86:3212–3218. doi:10.1890/05-0427

    Article  Google Scholar 

Download references

Acknowledgments

This paper had its origin at a workshop on “Drivers, impacts, mechanisms and adaptation in insect invasions” hosted by the DST-NRF Centre of Excellence for Invasion Biology in Stellenbosch, South Africa, in November 2014. Thanks to Tim Blackburn, Jane Catford and three reviewers for very valuable comments on an earlier version of this manuscript. This work was supported by Australian Research Council Discovery Project grant DP150101839. Additional financial support was provided by HortGro, the National Research Foundation of South Africa, Stellenbosch University, and SubTrop.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Duncan.

Additional information

Guest editors: Matthew P. Hill, Susana Clusella-Trullas, John S. Terblanche & David M. Richardson / Insect Invasions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duncan, R.P. How propagule size and environmental suitability jointly determine establishment success: a test using dung beetle introductions. Biol Invasions 18, 985–996 (2016). https://doi.org/10.1007/s10530-016-1083-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-016-1083-8

Keywords

Navigation