Skip to main content

Advertisement

Log in

Relative performance of ecological niche and occupancy models for predicting invasions by patchily-distributed species

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Ecological niche models (ENM) have been used with mixed success for predicting the geographic extent of non-native species to aid management and conservation. This approach is problematic for predicting invasions of patchily-distributed species (e.g., pond-breeding amphibians), whose occurrence is often determined by local habitat conditions. Here, we tested the performance of bioclimatic ENM for predicting occurrence (from repeated surveys) of two non-native pond-breeding anurans at 71 wetlands in British Columbia, Canada: permanent pond specialist American bullfrog (Lithobates catesbeianus), and generalist green frog (Lithobates clamitans). For L. catesbeianus, we assessed the risk of invasion beyond the invasion front. We found higher correlation between ENM and occupancy predictions for L. clamitans (r s  = 0.58), than for L. catesbeianus (r s  = −0.26). L. clamitans occurrence was highest at low elevations and high annual precipitation; in contrast, L. catesbeianus occupancy was predicted by wetland connectivity and distance from a historic introduction site [low at isolated ponds >50 km from the introduction site, and high (>0.8) at all ponds with >10 % water within 500 m]. Conditional on successful dispersal, four sites beyond the L. catesbeianus invasion front surveyed in this study were at high risk of invasion due to high habitat suitability (proportion of area occupied = 0.33; 0.04–0.83, 95 % CI). In conclusion, ENMs may be useful for informing invasion management for climate driven wetland species, but repeated sampling is necessary to predict invasions for habitat-driven wetland species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams MJ, Pearl CA, Bruce Bury R (2003) Indirect facilitation of an anuran invasion by non-native fishes. Ecol Lett 6:343–351

    Article  Google Scholar 

  • Bled F, Royle JA, Cam E (2011) Hierarchical modeling of an invasive spread: the Eurasian Collared-Dove Streptopelia decaocto in the United States. Ecol Appl 21:290–302

    Article  PubMed  Google Scholar 

  • Bossenbroek JM, Johnson LE, Peters B, Lodge DM (2007) Forecasting the expansion of zebra mussels in the United States. Conserv Biol 21:800–810

    Article  PubMed  Google Scholar 

  • Brummer TJ, Maxwell BD, Higgs MD, Rew LJ (2013) Implementing and interpreting local-scale invasive species distribution models. Divers Distrib 19:919–932

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multi-model inference, 2nd edn. Springer, Berlin

    Google Scholar 

  • Campbell CE, Warkentin IG, Powell KG (2004) Factors influencing the distribution and potential spread of introduced anurans in Western Newfoundland. Northeast Nat 11:151–162

    Article  Google Scholar 

  • Collins JP, Wilbur HM (1979) Breeding habits and habitats of the amphibians of the Edwin S. George Reserve Michiga USA, and notes on the local distributions of fishes. Occas Pap Mus Zool Univ Mich 686:1–34

    Google Scholar 

  • DiCiccio TJ, Efron B (1996) Bootstrap confidence intervals. Stat Sci 11:189–228

    Article  Google Scholar 

  • Doubledee RA, Muller EB, Nisbet RM (2003) Bullfrogs, disturbance regimes, and the persistence of California red-legged frogs. J Wildl Manag 67:424–438

    Article  Google Scholar 

  • Ehrlich PR (1989) Attributes of invaders and the invading processes: vertebrates. In Drake JA (ed) Biological invasions: a global perspective. pp 315–328. Retrieved from http://www.scopenvironment.org/downloadpubs/scope37/scope37-ch13.pdf

  • Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE, Yates CJ (2010) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • Eraud C, Boutin JM, Roux D, Faivre B (2007) Spatial dynamics of an invasive bird species assessed using robust design occupancy analysis: the case of the Eurasian collared dove (Streptopelia decaocto) in France. J Biogeogr 34:1077–1086

    Article  Google Scholar 

  • Ficetola GF, Thuiller W, Miaud C (2007) Prediction and validation of the potential global distribution of a problematic alien invasive species—the American bullfrog. Divers Distrib 13:476–485

    Article  Google Scholar 

  • Ficetola GF, Maiorano L, Falcucci A, Dendoncker N, Boitani L, Padoa-Schioppa E, Miaud C, Thuiller W (2010) Knowing the past to predict the future: land-use change and the distribution of invasive bullfrogs. Glob Change Biol 16:528–537

    Article  Google Scholar 

  • Fiske I, Chandler R (2011) Unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance. J Stat Softw 43:1–23

    Google Scholar 

  • Foxcroft LC, Rouget M, Richardson DM, Mac Fadyen S (2004) Reconstructing 50 years of Opuntia stricta invasion in the Kruger National Park, South Africa: environmental determinants and propagule pressure. Divers Distrib 10:427–437

    Article  Google Scholar 

  • Fuller TE, Pope KL, Ashton DT, Welsh HH (2011) Linking the distribution of an invasive amphibian (Rana catesbeiana) to habitat conditions in a managed river system in northern California. Restor Ecol 19:204–213

    Article  Google Scholar 

  • Funk WC, Garcia TS, Cortina GA, Hill RH (2011) Population genetics of introduced bullfrogs, Rana (Lithobates) catesbeianus, in the Willamette Valley, Oregon, USA. Biol Invasions 13:651–658

    Article  Google Scholar 

  • Glen AS, Pech RP, Byrom AE (2013) Connectivity and invasive species management: towards an integrated landscape approach. Biol Invasions 15:2127–2138

    Article  Google Scholar 

  • Gormley AM, Forsyth DM, Griffioen P, Lindeman M, Ramsey DSL, Scroggie MP, Woodford L (2011) Using presence-only and presence–absence data to estimate the current and potential distributions of established invasive species. J Appl Ecol 48:25–34

    Article  PubMed Central  PubMed  Google Scholar 

  • Govindarajulu P, Altwegg R, Anholt BR (2005) Matrix model investigation of invasive species control: Bullfrogs on Vancouver Island. Ecol Appl 15:2161–2170

    Article  Google Scholar 

  • Govindarajulu P, Price WS, Anholt BR (2006) Introduced bullfrogs (Rana catesbeiana) in Western Canada: has their ecology diverged? J Herpetol 40:249–260

    Article  Google Scholar 

  • Hecnar SJ, M’Closkey RT (1997) The effects of predatory fish on amphibian species richness and distribution. Biol Conserv 79:123–131

    Article  Google Scholar 

  • Hecnar SJ, M’Closkey RT (1998) Species richness patterns of amphibians in southwestern Ontario ponds. J Biogeogr 25:763–772

    Article  Google Scholar 

  • Herrmann HL, Babbitt KJ, Baber MJ, Congalton RG (2005) Effects of landscape characteristics on amphibian distribution in a forest-dominated landscape. Biol Conserv 123:139–149

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Houlahan JE, Findlay CS (2003) The effects of adjacent land use on wetland amphibian species richness and community composition. Can J Fish Aquat Sci 60:1078–1094

    Article  Google Scholar 

  • Johnson PTJ, McKenzie VJ, Peterson AC, Kerby JL, Brown J, Blaustein AR, Jackson T (2011) Regional decline of an iconic amphibian associated with elevation, land-use change, and invasive species. Conserv Biol 25:556–566

    Article  PubMed  Google Scholar 

  • Jones CC, Acker SA, Halpern CB (2010) Combining local-and large-scale models to predict the distributions of invasive plant species. Ecol Appl 20:311–326

    Article  PubMed  Google Scholar 

  • Kiesecker JM, Blaustein AR, Miller CL (2001) Potential mechanisms underlying the displacement of native red-legged frogs by introduced bullfrogs. Ecology 82:1964–1970

    Article  Google Scholar 

  • Kolozsvary MB, Swihart RK (1999) Habitat fragmentation and the distribution of amphibians: patch and landscape correlates in farmland. Can J Zool 77:1288–1299

    Article  Google Scholar 

  • Kupferberg SJ (1997) Bullfrog (Rana catesbeiana) invasion of a California river: the role of larval competition. Ecology 78:1736–1751

    Article  Google Scholar 

  • Lehtinen RM, Galatowitsch SM, Tester JR (1999) Consequences of habitat loss and fragmentation for wetland amphibian assemblages. Wetlands 19:1–12

    Article  Google Scholar 

  • MacKenzie DI, Royle JA (2005) Designing occupancy studies: general advice and allocating survey effort. J Appl Ecol 42:1105–1114

    Article  Google Scholar 

  • MacKenzie DI, Nichols JD, Lachman GB, Droege S, Andrew Royle J, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255

    Article  Google Scholar 

  • MacKenzie DI, Nichols JD, Hines JE, Knutson MG, Franklin AB (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84:2200–2207

    Article  Google Scholar 

  • Mazerolle MJ, Desrochers A, Rochefort L (2005) Landscape characteristics influence pond occupancy by frogs after accounting for detectability. Ecol Appl 15:824–834

    Article  Google Scholar 

  • Nori J, Akmentins MS, Ghirardi R, Frutos N, Leynaud GC (2011) American bullfrog invasion in Argentina: where should we take urgent measures? Biodivers Conserv 20:1125–1132

    Article  Google Scholar 

  • Parker JD, Torchin ME, Hufbauer RA, Lemoine NP, Alba C, Blumenthal DM, Bossdorf O, Byers JE, Dunn AM, Heckman RW, Hejda M, Jarosik V, Kanarek AR, Martin LB, Perkins SE, Pysek P, Schierenbeck K, Schloder C, van Klinken R, Vaughn KJ, Williams W, Wolfe LM (2013) Do invasive species perform better in their new ranges? Ecology 94:985–994

    Article  PubMed  Google Scholar 

  • Pearl CA, Adams MJ, Bury RB, McCreary B (2004) Asymmetrical effects of introduced bullfrogs (Rana catesbeiana) on native ranid frogs in Oregon. Copeia 2004:11–20

    Article  Google Scholar 

  • Peterman WE, Crawford JA, Kuhns AR (2013) Using species distribution and occupancy modeling to guide survey efforts and assess species status. J Nat Conserv 21:114–121

    Article  Google Scholar 

  • Peterson AT, Vieglais DA (2001) Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem. Bioscience 51:363–371

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Pluess T, Jarošík V, Pyšek P, Cannon R, Pergl J, Breukers A, Bacher S (2012) Which factors affect the success or failure of eradication campaigns against alien species? PLoS ONE 7:e48157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Popescu VD, Hunter ML (2011) Clearcutting affects habitat connectivity for a forest amphibian by decreasing permeability to juvenile movements. Ecol Appl 21:1283–1295

    Article  PubMed  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing. Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/

  • Richardson DM, Pyšek P (2008) Fifty years of invasion ecology—the legacy of Charles Elton. Divers Distrib 14:161–168

    Article  Google Scholar 

  • Roques L, Auger-Rozenberg MA, Roques A (2008) Modelling the impact of an invasive insect via reaction-diffusion. Math Biosci 216:47–55

    Article  PubMed  Google Scholar 

  • Royle JA, Chandler RB, Yackulic C, Nichols JD (2012) Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. Methods Ecol Evol 3:545–554

  • Rothermel BB (2004) Migratory success of juveniles: a potential constraint on connectivity for pond-breeding amphibians. Ecol Appl 14:1535–1546

    Article  Google Scholar 

  • Sing T, Sander O, Beerenwinkel N, Lengauer T (2005) ROCR: visualizing classifier performance in R. Bioinformatics 21:3940–3941

    Article  CAS  PubMed  Google Scholar 

  • Skelly DK, Werner EE, Cortwright SA (1999) Long-term distributional dynamics of a Michigan amphibian assemblage. Ecology 80:2326–2337

    Article  Google Scholar 

  • Sturtz S, Ligges U, Gelman A (2005) R2WinBUGS: a package for running WinBUGS from R. J Stat Softw 12:1–16

    Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  CAS  PubMed  Google Scholar 

  • Thuiller W, Richardson DM, PyŠEk P, Midgley GF, Hughes GO, Rouget M (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11:2234–2250

    Article  Google Scholar 

  • Tobin PC, Liebhold AM, Anderson Roberts E (2007) Comparison of methods for estimating the spread of a non-indigenous species. J Biogeogr 34:305–312

    Article  Google Scholar 

  • Trumbo DR, Burgett AA, Knouft JH (2011) Testing climate-based species distribution models with recent field surveys of pond-breeding amphibians in eastern Missouri. Can J Zool 89:1074–1083

    Article  Google Scholar 

  • Turchin P (1998) Quantitative analysis of movement: measuring and modeling population redistribution in plants and animals. Sinauer Associates, Sunderland

    Google Scholar 

  • Vaclavik T, Meentemeyer RK (2012) Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Divers Distrib 18:73–83

    Article  Google Scholar 

  • Van Buskirk J (2003) Habitat partitioning in European and North American pond-breeding frogs and toads. Divers Distrib 9:399–410

    Article  Google Scholar 

  • Van Buskirk J (2005) Local and landscape influence on amphibian occurrence and abundance. Ecology 86:1936–1947

    Article  Google Scholar 

  • Vancouver Sun (1945) Frog’s legs answer both rationing and rehabilitation. 23 October 1945

  • Vos CC, Chardon JP (1998) Effects of habitat fragmentation and road density on the distribution pattern of the moor frog Rana arvalis. J Appl Ecol 35:44–56

    Article  Google Scholar 

  • Warren RJ II, Ursell T, Keiser AD, Bradford MA (2013) Habitat, dispersal and propagule pressure control exotic plant infilling within an invaded range. Ecosphere 42:1–12

    Google Scholar 

  • Weir LA, Royle JA, Nanjappa P, Jung RE (2005) Modeling anuran detection and site occupancy on North American Amphibian Monitoring Program (NAAMP) routes in Maryland. J Herpetol 39:627–639

    Article  Google Scholar 

  • Wellborn GA, Skelly DK, Werner EE (1996) Mechanisms creating community structure across a freshwater habitat gradient. Annu Rev Ecol Syst 27:337–363

    Article  Google Scholar 

  • Werner EE, Wellborn GA, McPeek MA (1995) Diet composition in postmetamorphic bullfrogs and green frogs: implications for interspecific predation and competition. J Herpetol 29:600–607

    Article  Google Scholar 

  • Werner EE, Skelly DK, Relyea RA, Yurewicz KL (2007) Amphibian species richness across environmental gradients. Oikos 116:1697–1712

    Article  Google Scholar 

  • Wu Z, Li Y, Wang Y, Adams MJ (2005) Diet of introduced bullfrogs (Rana catesbeiana): predation on and diet overlap with native frogs on Daishan Island, China. J Herpetol 39:668–674

    Article  Google Scholar 

  • Yackulic CB, Chandler R, Zipkin EF, Royle JA, Nichols JD, Campbell Grant EH, Veran S (2013) Presence-only modelling using MAXENT: when can we trust the inferences. Methods Ecol Evol 4:236–243

  • Zipkin EF, Grant EHC, Fagan WF (2012) Evaluating the predictive abilities of community occupancy models using AUC while accounting for imperfect detection. Ecol Appl 22:1962–1972. doi:10.1890/11-1936.1

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank M. Pearson, A. Kissel and M. Segal for help with field surveys, and R. Munshaw and J. Dubman for help with species distribution models. We thank two anonymous reviewers for their comments, which greatly improved the manuscript. This work was funded by a Habitat Conservation Trust Foundation (0–366) grant to P.G., the Canada Research Chairs program, and a Natural Science and Engineering Research Council Discovery grant to W.J.P. V.D.P. was partly supported by a David H. Smith Conservation Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rylee G. Murray.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 674 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murray, R.G., Popescu, V.D., Palen, W.J. et al. Relative performance of ecological niche and occupancy models for predicting invasions by patchily-distributed species. Biol Invasions 17, 2691–2706 (2015). https://doi.org/10.1007/s10530-015-0906-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-015-0906-3

Keywords

Navigation