Skip to main content
Log in

Overproduction of rhamnolipids in Pseudomonas aeruginosa PA14 by redirection of the carbon flux from polyhydroxyalkanoate synthesis and overexpression of the rhlAB-R operon

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

To construct Pseudomonas aeruginosa PA14 derivatives that overproduce rhamnolipids (RL) by blocking the synthesis of the carbon-storage polymer polyhydroxyalkanoates (PHA) and by overexpressing the rhlAB-R operon that encodes for enzymes of RL synthesis and the RhlR transcriptional regulator.

Results

In contrast to previous results showing that overexpression of rhlAB-R genes in two P. aeruginosa strains (PAO1 and ATCC 9027) is sufficient to overproduce RL, we show that a PA14 derivative overexpressing the rhlAB-R operon did not increase the synthesis of these biosurfactants. In addition, PA14 mutants deficient in PHA production did not overproduce RL either. However, if the rhlAB-R genes were expressed in a mutant that is completely impaired in PHA synthesis, a significant increase in RL production was observed (59%). These results show that RL production in PA14 is limited both by the availability of fatty acid precursors and by the levels of the RhlA and RhlB enzymes that are involved in the synthesis of mono-RL.

Conclusions

The limitation of RL production by P. aeruginosa PA14 is multifactorial and diverse from the results obtained with other strains. Thus, the factors that limit RL production are particular to each P. aeruginosa strain, so strain-specific strategies should be developed to increase their production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Mawgoud AM, Lépine F, Déziel E (2014) A stereospecific pathway diverts β-oxidation intermediates to the biosynthesis of rhamnolipids biosurfactants. Chem Biol 21:1–9

    Article  Google Scholar 

  • Banat I, Franzetti A, Bestetti G (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444

    Article  CAS  Google Scholar 

  • Berger E, Ramsay BA, Ramsay JA, Chavarie C (1989) PHB recovery by hypochlorite digestion of non-PHB biomass. Biotechnol Tech 3(4):227–232

    Article  CAS  Google Scholar 

  • Chandrasekaran EV, Bemiller JN (1980) Constituent analyses of glycosaminoglycans. Methods Carbohydr Chem 8:89–96

    CAS  Google Scholar 

  • Croda-García G, Grosso-Becerra V, González A et al (2011) Transcriptional regulation of Pseudomonas aeruginosa rhlR: role of the Crp-ortholog Vfr (virulence factor regulator) and quorum-sensing regulators LasR and RhlR. Microbiology 157(9):2545–2555

    Article  Google Scholar 

  • Dobler L, Vilella LF, Almeida RC, Neves BC (2016) Rhamnolipids in perspective: gene regulation pathways, metabolic engineering, production and technological forecasting. New Biotechnol 33(1):123–133

    Article  CAS  Google Scholar 

  • Gellatly SL, Hancock REW (2013) Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis 67:159–173

    Article  CAS  Google Scholar 

  • Grosso-Becerra MV, Croda-García G, Merino E, Servín-González L et al (2014) Regulation of Pseudomonas aeruginosa virulence factors by two novel RNA thermometers. Proc Natl Acad Sci USA 111(43):15562–15567

    Article  CAS  Google Scholar 

  • Grosso-Becerra MV, González-Valdez A, Granados-Martínez MJ et al (2016) Pseudomonas aeruginosa ATCC 9027 is a non-virulent strain suitable for mono-rhamnolipids production. Appl Microbiol Biotech 100(23):9995–10004

    Article  CAS  Google Scholar 

  • Gust B, Challis GL, Fowler K et al (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 100(4):1541–1546

    Article  CAS  Google Scholar 

  • Gutierrez M, Choi MH, Tian B et al (2013) Simultaneous inhibition of rhamnolipids and polyhydroxyalkanoic acid synthesis and biofilm formation by 2-bromoalkanoic acids: effect of inhibitor alkyl-chain length. PLoS ONE 8(9):e73986. https://doi.org/10.1371/journal.pone.0073986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann N, Steinbüchel A, Rehm B (2000) The Pseudomonas aeruginosa phaG gene product is involved in the synthesis of polyhydroxyalkanoic acid consisting of medium-chain-length from non-related carbon sources. FEMS Microbiol Lett 184(2):253–259

    Article  CAS  Google Scholar 

  • Lee DG, Urbach JM, Wu G et al (2006) Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol 7:R90

    Article  Google Scholar 

  • Lesic B, Rahme LG (2008) Use of the lambda Red recombinase system to rapidly generate mutants in Pseudomonas aeruginosa. BMC Biol Mol 9:20–28

    Article  Google Scholar 

  • Liberati NT, Urbach JM, Miyada S et al (2006) An ordered non-redundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci USA 103(8):2833–2838

    Article  CAS  Google Scholar 

  • Matsuyama T, Sogawa M, Yano I (1987) Direct colony thin-layer chromatography and rapid characterization of Serratia marscescens wetting agents. Appl Environ Microbiol 53:1186–1188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Müller MM, Hörmann B, Kugel M, Syldark C, Hausmann R (2011) Evaluation of rhamnolipid production capacity of Pseudomonas aeruginosa PAO1 in comparison to the rhamnolipids overproducing strains DSM2874. Appl Microbiol Biotechnol 89:585–592

    Article  Google Scholar 

  • Nitschke M, Costa SGVAO, Contiero J (2011) Rhamnolipids and PHAs: recent reports on Pseudomonas-derived molecules of increasing industrial interest. Process Biochem 46:621–630

    Article  CAS  Google Scholar 

  • Slepecky RA, Law JH (1960) A rapid spectophometric assay of alpha, beta-unsaturated acids and beta-hydroxy acids. Anal Chem 32:1697–1699

    Article  CAS  Google Scholar 

  • Soberón-Chávez G, Aguirre-Ramírez M, Sánchez R (2005a) The Pseudomonas aeruginosa RhlA enzyme is not only involved in rhamnolipid, but also in polyhydroxyalkanoate production. J Ind Microbiol Biotechnol 32:675–677

    Article  Google Scholar 

  • Soberón-Chávez G, Lépine F, Déziel E (2005b) Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68:718–725

    Article  Google Scholar 

  • West SEH, Schweizer HP, Dall C et al (1994) Construction of improved Escherichia-Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. Gene 148:81–86

    Article  CAS  Google Scholar 

  • Williams P, Cámara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:182–191

    Article  CAS  Google Scholar 

  • Wittgens A, Tiso T, Arndt TT et al (2011) Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microbial Cell Fact 10:80

    Article  CAS  Google Scholar 

  • Zhang Y, Miller RM (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol 58:3276–3282

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

UGG and MPSA are doctoral student of Programa de Maestría y Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), this study was performed in partial fulfillment of the requirements for UGG doctorate degree. UGG (CVU-422007) and MPSA (CVU-741217) received a fellowship from CONACYT. We acknowledge Abigail González-Valdez for technical assistance. This work was supported in part by grant IN200416 from Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica, (Dirección General de Asuntos del Personal Académico -UNAM) and grant 252269 from Consejo Nacional de Ciencia y Tecnología (CONACYT).

Supporting information

Supplementary Fig. 1—shows the standard curve use to determine PHA weight from absorbance at 235 nm.

Supplementary Fig. 2—presents the PA14 strain growth curve in PPGAS medium.

Supplementary Fig. 3—shows the PHA production of PA14 derivatives carrying mutations in genes involved in the synthesis of this fatty acid polymer, and the experiments showing that the phaC1 gene of the phaC2::MAR2xT7 mutant (ID 54085) is not functional since it is unable to complement the phaC1::MAR2xT7 mutant (ID 32531) for PHA synthesis.

Supplementary Table S1—shows the oligonucleotides used to construct the PA14 ΔphaG::aac(3)IV mutant and the pUCP20 derived plasmids expressing phaC1wt and phaC1m.

Supplementary Table S2—shows the results obtained from the analysis of the image of thin-layer chromatography presented in Fig. 2, using the ImageJ software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria Soberón-Chávez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Gómez, U., Soto-Aceves, M.P., Servín-González, L. et al. Overproduction of rhamnolipids in Pseudomonas aeruginosa PA14 by redirection of the carbon flux from polyhydroxyalkanoate synthesis and overexpression of the rhlAB-R operon. Biotechnol Lett 40, 1561–1566 (2018). https://doi.org/10.1007/s10529-018-2610-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-018-2610-8

Keywords

Navigation