Skip to main content
Log in

Multiple-site genetic modifications in Escherichia coli using lambda-Red recombination and I-SceI cleavage

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

Genetic modifications to bacterial chromosomes are important for research; recently we reported a two-plasmid system for single locus modification in Escherichia coli and an improved method for simultaneous multiple-loci modification is needed.

Results

An intermediate bacterial strain was generated with different resistance marker genes flanked by I-SceI recognition sites at multiple target loci. Then a donor plasmid carrying several alleles with desired modifications was transformed into the intermediate strain together with a bifunctional helper plasmid encoding λ-Red recombinase and I-SceI endonuclease. I-SceI would induce double-strand breaks (DSBs) in the chromosome and λ-Red would induce recombination between chromosome DSBs and allele fragments from the donor plasmid, resulting in genomic modifications.

Conclusions

This method has been used to successfully perform three different loci modifications simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Blank K, Hensel M, Gerlach RG (2011) Rapid and highly efficient method for scarless mutagenesis within the Salmonella enterica chromosome. PLoS One 6:e15763

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  PubMed  Google Scholar 

  • Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 100:1541–1546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herring CD, Glasner JD, Blattner FR (2003) Gene replacement without selection: regulated suppression of amber mutations in Escherichia coli. Gene 311:153–163

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S, Kelly RM (2015) Multigene editing in the Escherichia coli Genome via the CRISPR-Cas9 System. Appl Environ Microbiol 81:2506–2514

    Article  CAS  PubMed  Google Scholar 

  • Kuhlman TE, Cox EC (2010) Site-specific chromosomal integration of large synthetic constructs. Nucleic Acids Res 38:e92

    Article  PubMed Central  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li H et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed Central  PubMed  Google Scholar 

  • Lu D, Zhou X, Sun H, Song X, Chen H (2012) Efficient directional seamless DNA (deoxyribonucleic acid) segment connecting method CN patent. Patent 201210284031.

  • Marx CJ, Lidstrom ME (2002) Broad-host-range cre-lox system for antibiotic marker recycling in gram-negative bacteria. Biotechniques 33:1062–1067

    CAS  PubMed  Google Scholar 

  • Milne I, Bayer M, Cardle L, Shaw P, Stephen G, Wright F, Marshall D (2010) Tablet–next generation sequence assembly visualization. Bioinformatics 26:401–402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sawitzke JA, Thomason LC, Costantino N, Bubunenko M, Datta S, Court DL (2007) Recombineering: in vivo genetic engineering in E. coli, S. enterica, and beyond. Methods Enzymol 421:171–199

    Article  CAS  PubMed  Google Scholar 

  • Shao Z, Zhao H (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 37:e16

    Article  PubMed Central  PubMed  Google Scholar 

  • Stoddard BL (2005) Homing endonuclease structure and function. Q Rev Biophys 38:49–95

    Article  CAS  PubMed  Google Scholar 

  • Tischer BK, von Einem J, Kaufer B, Osterrieder N (2006) Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques 40:191–197

    Article  CAS  PubMed  Google Scholar 

  • Tsuge K, Matsui K, Itaya M (2003) One step assembly of multiple DNA fragments with a designed order and orientation in Bacillus subtilis plasmid. Nucleic Acids Res 31:e133

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang J et al (2014) High-efficiency scarless genetic modification in Escherichia coli using lambda-red recombination and I-Scei cleavage. Appl Environ Microbiol 80:3826–3834

    Article  PubMed Central  PubMed  Google Scholar 

  • Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA 97:5978–5983

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu BJ, Kang KH, Lee JH, Sung BH, Kim MS, Kim SC (2008) Rapid and efficient construction of markerless deletions in the Escherichia coli genome. Nucleic Acids Res 36:e84

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jian Li for thoughtful discussions and reading of the manuscript. We thank Benjamin S. Glick (University of Chicago) for providing SnapGene software for producing plasmid maps. We thank Angel Yeast Co. Ltd for providing yeast extract for experiments.

This work was supported by the National Basic Research Program (973 Program) of China [2014CB745100, 2011CBA00800].

Conflict of interest

The authors have declared that no conflict of interests exist.

Supporting information

Supplementary Fig. S1: PCR analysis for cadA deletion, thrBC deletion and gdhA integration.

Supplementary Fig. S2: Lysine production in shake flask.

Supplementary Table S1: Oligonucleotide primers used in this study.

Supplementary Table S2: Plasmids used in this study.

Supplementary Methods and Protocols.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Sun, B., Huang, H. et al. Multiple-site genetic modifications in Escherichia coli using lambda-Red recombination and I-SceI cleavage. Biotechnol Lett 37, 2011–2018 (2015). https://doi.org/10.1007/s10529-015-1878-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-1878-1

Keywords

Navigation