Skip to main content

Advertisement

Log in

Clinical and Immunological Significance of ANKRD52 in Pan-Cancer

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Ankyrin repeat domain 52 (ANKRD52) is a regulatory component of the protein phosphatase 6 (PP6) holoenzyme. Evidence has emerged to suggest involvement of ANKRD52 in tumor metastases and cancer cell escape from T cell-mediated elimination and immunotherapy but there has been no research across different cancer types. The current study explored the biological functions of ANKRD52 by combining data from many databases. The aim was to expose new diagnostic or treatment biomarkers for malignant tumors. The roles of ANKRD52 with respect to immunotherapy in 33 human cancer types were analyzed by combining data from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE), UCSC Xena, the Tumor Immune Estimation Resource (TIMER), TISIDB and Cellminer. Bioinformatics methods were used to analyze the association between ANKRD52 expression and prognosis, immunological indicators (immune cell infiltration, ESTIMATE scores and tumor microenvironment (TME) signatures), tumor mutational burden (TMB), microsatellite instability (MSI) and drug sensitivity. ANKRD52 expression was generally higher in 24 tumor tissues than in normal tissues and was associated with poor prognosis, especially in kidney chromophobe (KICH). Lower expression was observed in advanced cancer. ANKRD52 expression was strongly linked to major immunological indicators, such as immune cell infiltration, ESTIMATE scores, TME signatures, as well as expression of immune and tumor-related genes. Expression was also associated with indicators of immunotherapy efficacy and outcome, such as TMB in 7 cancer types and MSI in 12. In addition, ANKRD52 expression was linked to sensitivity to a number of anticancer drugs. ANKRD52 had a distinct immune function in breast invasive carcinoma (BRCA) that correlated negatively with most immune indicators. Expression was enriched in proliferation-, differentiation- and metabolism-related pathways and linked to other immune cells and TME signatures. A nomogram to predict 3- or 5-year overall survival (OS) of patients with BRCA was constructed. ANKRD52 may have utility as an oncological and immunological biomarker. New insights into oncogenesis are presented and the development of ANKRD52-targeting to increase the therapeutic efficacy of immunotherapy combined with chemotherapy explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barretina J et al (2012) The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 492(7428):290–290

    Article  CAS  Google Scholar 

  • Boland CR, Goel A (2010) Microsatellite instability in colorectal cancer. Gastroenterology 138(6):2073–2087

    Article  CAS  PubMed  Google Scholar 

  • Bonneville R et al (2017) Landscape of microsatellite instability across 39 cancer types. JCO Precis Oncol 1:1–5

    Article  Google Scholar 

  • Borovski T et al (2013) Therapy-resistant tumor microvascular endothelial cells contribute to treatment failure in glioblastoma multiforme. Oncogene 32(12):1539–1548

    Article  CAS  PubMed  Google Scholar 

  • Cancer Genome Atlas Research N et al (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 45(10):1113–1120

    Article  Google Scholar 

  • Chalmers ZR et al (2017) Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 9(1):34

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan SW et al (2008) A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer Res 68(8):2592–2598

    Article  CAS  PubMed  Google Scholar 

  • Chen S et al (2015) Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160(6):1246–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B et al (2018a) Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol Biol 1711:243–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L et al (2018b) Combination of gemcitabine and erlotinib inhibits recurrent pancreatic cancer growth in mice via the JAK-STAT pathway. Oncol Rep 39(3):1081–1089

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choucair K et al (2020) TMB: a promising immune-response biomarker, and potential spearhead in advancing targeted therapy trials. Cancer Gene Ther 27(Suppl 5):1–13

    Google Scholar 

  • Consortium G. T. (2015) Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348(6235):648–660

    Article  Google Scholar 

  • Geeleher P et al (2014) pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS ONE 9(9):e107468

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldman MJ et al (2020) Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol 38(6):675–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong X et al (2020) The structure and regulation of the E3 ubiquitin ligase HUWE1 and its biological functions in cancer. Invest New Drugs 38(2):515–524

    Article  CAS  PubMed  Google Scholar 

  • Goswami CP, Nakshatri H (2013) PROGgene: gene expression based survival analysis web application for multiple cancers. J Clin Bioinforma 3(1):22

    Article  PubMed  PubMed Central  Google Scholar 

  • Gottesman MM et al (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2(1):48–58

    Article  CAS  PubMed  Google Scholar 

  • Grossman RL et al (2016) Toward a shared vision for cancer genomic data. N Engl J Med 375(12):1109–1112

    Article  PubMed  PubMed Central  Google Scholar 

  • Gryfe R et al (2000) Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med 342(2):69–77

    Article  CAS  PubMed  Google Scholar 

  • Hanzelmann S et al (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform 14:7

    Article  Google Scholar 

  • Hellmann MD, Paz-Ares L (2018) Lung cancer with a high tumor mutational burden. N Engl J Med 379(11):1093–1094

    Article  PubMed  Google Scholar 

  • Hellmann MD et al (2018a) Tumor mutational burden and efficacy of nivolumab monotherapy and in combination with ipilimumab in small-cell lung cancer. Cancer Cell 33(5):853–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellmann MD et al (2018b) Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med 378(22):2093–2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellmann MD et al (2018c) Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell 33(5):843–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holohan C et al (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13(10):714–726

    Article  CAS  PubMed  Google Scholar 

  • Khazaeli Najafabadi M et al (2021) Role of GATA3 in tumor diagnosis: a review. Pathol Res Pract 226:153611

    Article  CAS  PubMed  Google Scholar 

  • Lee DW et al (2019) Tumor mutation burden and prognosis in patients with colorectal cancer treated with adjuvant fluoropyrimidine and oxaliplatin. Clin Cancer Res 25(20):6141–6147

    Article  CAS  PubMed  Google Scholar 

  • Lee TF et al (2021) TAZ negatively regulates the novel tumor suppressor ANKRD52 and promotes PAK1 dephosphorylation in lung adenocarcinomas. Biochim Biophys Acta Mol Cell Res 1868(2):118891

    Article  CAS  PubMed  Google Scholar 

  • Lei QY et al (2008) TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol Cell Biol 28(7):2426–2436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T et al (2017) TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res 77(21):e108–e110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T et al (2020) TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res 48(W1):W509–W514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J et al (2023) Cuproptosis/ferroptosis-related gene signature is correlated with immune infiltration and predict the prognosis for patients with breast cancer. Front Pharmacol 14:1192434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariathasan S et al (2018) TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554(7693):544–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathijssen RH et al (2014) Determining the optimal dose in the development of anticancer agents. Nat Rev Clin Oncol 11(5):272–281

    Article  CAS  PubMed  Google Scholar 

  • Meng Z et al (2020) Using ESTIMATE algorithm to establish an 8-mRNA signature prognosis prediction system and identify immunocyte infiltration-related genes in Pancreatic adenocarcinoma. Aging 12(6):5048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Offin M et al (2019) Tumor mutation burden and efficacy of EGFR-tyrosine kinase inhibitors in patients with EGFR-mutant lung cancers. Clin Cancer Res 25(3):1063–1069

    Article  CAS  PubMed  Google Scholar 

  • Reinhold WC et al (2012) CellMiner: a web-based suite of genomic and pharmacologic tools to explore transcript and drug patterns in the NCI-60 cell line set. Cancer Res 72(14):3499–3511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodes DR et al (2004) ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6(1):1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359(6382):1350–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizvi NA et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizvi H et al (2018) Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol 36(7):633–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ru B et al (2019) TISIDB: an integrated repository portal for tumor-immune system interactions. Bioinformatics 35(20):4200–4202

    Article  CAS  PubMed  Google Scholar 

  • Sade-Feldman M et al (2017) Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun 8(1):1136

    Article  PubMed  PubMed Central  Google Scholar 

  • Schumacher TN, Schreiber RD (2015) [Special Issue Review] Neoantigens in cancer immunotherapy. Science 348(6230):69–74

    Article  CAS  PubMed  Google Scholar 

  • Sedgwick SG, Smerdon SJ (1999) The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem Sci 24(8):311–316

    Article  CAS  PubMed  Google Scholar 

  • Sharma P et al (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168(4):707–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel RL et al (2022) Cancer statistics, 2022. CA Cancer J Clin 72(1):7–33

    Article  PubMed  Google Scholar 

  • Snyder A et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371(23):2189–2199

    Article  PubMed  PubMed Central  Google Scholar 

  • Song TY et al (2021) Tumor evolution selectively inactivates the core microRNA machinery for immune evasion. Nat Commun 12(1):7003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefansson B et al (2008) Protein phosphatase 6 regulatory subunits composed of ankyrin repeat domains. Biochemistry 47(5):1442–1451

    Article  CAS  PubMed  Google Scholar 

  • Sucker A et al (2017) Acquired IFNgamma resistance impairs anti-tumor immunity and gives rise to T-cell-resistant melanoma lesions. Nat Commun 8:15440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung H et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Article  PubMed  Google Scholar 

  • Tang Z et al (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45(W1):W98–W102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thoennissen NH et al (2009) Cucurbitacin B induces apoptosis by inhibition of the JAK/STAT pathway and potentiates antiproliferative effects of gemcitabine on pancreatic cancer cells. Cancer Res 69(14):5876–5884

    Article  CAS  PubMed  Google Scholar 

  • Uluer ET et al (2012) Effects of 5-fluorouracil and gemcitabine on a breast cancer cell line (MCF-7) via the JAK/STAT pathway. Acta Histochem 114(7):641–646

    Article  CAS  PubMed  Google Scholar 

  • Velzen M et al (2020) MSI as a predictive factor for treatment outcome of gastroesophageal adenocarcinoma. Cancer Treat Rev 86:102024

    Article  PubMed  Google Scholar 

  • Winthrop KL (2017) The emerging safety profile of JAK inhibitors in rheumatic disease. Nat Rev Rheumatol 13(5):320

    Article  PubMed  Google Scholar 

  • World Health Organization (WHO) (2020) Global health estimates 2020: deaths by cause, age, sex, by country and by region, 2000–2019. http://who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death. Accessed 11 Dec 2020

  • Wu T, Dai Y (2017) Tumor microenvironment and therapeutic response. Cancer Lett 387:61–68

    Article  CAS  PubMed  Google Scholar 

  • Wu H et al (2020) Isobaric tags for relative and absolute quantitation in proteomic analysis of potential biomarkers in invasive cancer, ductal carcinoma in situ, and mammary fibroadenoma. Front Oncol 10:574552

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu H et al (2021) Hypoxia-mediated complement 1q binding protein regulates metastasis and chemoresistance in triple-negative breast cancer and modulates the PKC-NF-kappaB-VCAM-1 signaling pathway. Front Cell Dev Biol 9:607142

    Article  PubMed  PubMed Central  Google Scholar 

  • Yabroff KR et al (2022) Association of the COVID-19 pandemic with patterns of statewide cancer services. J Natl Cancer Inst 114(6):907–909

    Article  PubMed  Google Scholar 

  • Yamamoto H, Imai K (2019) An updated review of microsatellite instability in the era of next-generation sequencing and precision medicine. Semin Oncol 46(3):261–270

    Article  PubMed  Google Scholar 

  • Yarchoan M et al (2017) Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med 377(25):2500–2501

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaretsky JM et al (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 375(9):819–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng D et al (2021) Tumor microenvironment evaluation promotes precise checkpoint immunotherapy of advanced gastric cancer. J Immunother Cancer 9(8):e002467

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding was provided by Haiyan Fund Project of Harbin Medical University Cancer Hospital (Grant nos. JJQN 2019-07, JJMS 2022-06), National Natural Science Foundation of China (Grant no. 82202996), The Fundamental Research Funds for the Provincial Universities (Grant no. 2022-KYYWF-0288), Heilongjiang Postdoctoral Financial Assistance (Grant no. LBH-Z22219), Heilongjiang Provincial Natural Science Foundation Outstanding Youth Project (Grant no. YQ2023H022), China Postdoctoral Science Foundation (Grant no. 2023MD 734172).

Author information

Authors and Affiliations

Authors

Contributions

H-ZY and M-CZ wrote the main manuscript text. H-ZY and HW prepared all figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Hao Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10528_2023_10645_MOESM1_ESM.jpg

Supplementary file1 Supplementary Fig. 1: Expression of ANKRD52 in 14 types of tumour tissues and corresponding normal tissues from TCGA database. (JPG 1392 KB)

10528_2023_10645_MOESM2_ESM.jpg

Supplementary file2 Supplementary Fig. 2: Clinical and immunological features of ANKRD52 in BRCA. (A) Relationship of ANKRD52 expression and cancer stage. (B) Genes positively (B1) and negatively (B2) correlated with ANKRD52. (C) The mutation landscapes of top 30 genes with the highest mutation frequency in the ANKRD52 Hexp and Lexp groups. (JPG 4388 KB)

10528_2023_10645_MOESM3_ESM.jpg

Supplementary file3 Supplementary Fig. 3: The relationship of the expression of ANKRD52 and immune- and cancer-associated genes in BRCA. (JPG 4340 KB)

10528_2023_10645_MOESM4_ESM.jpg

Supplementary file4 Supplementary Fig. 4: Construction and validation of a nomogram for ANKRD52 in the train and test sets. (A) Test set of calibration curves for predicting 3- and 5-year OS in BRCA. (B) Test set of ROC curve for predicting 3-year OS in BRCA. (C) Test set of ROC curve for predicting 5-year OS in BRCA. (D) Train set of calibration curves for predicting 3- and 5-year OS in BRCA. (E) Train set of ROC curve for predicting 3-year OS in BRCA. (F) Train set of ROC curve for predicting 5-year OS in BRCA. (JPG 2820 KB)

10528_2023_10645_MOESM5_ESM.jpg

Supplementary file5 Supplementary Fig. 5: Mutation landscapes of top 30 genes with the highest mutation frequency between patients with high- and low-expression of ANKRD52. (A) ACC (B) BLCA (C) CESE (D) CHOL (E) COAD (F) DLBC (G) ESCA (H) GBM (I) HNSC (J) KICH (K) KIRC (L) KIRP (M) LAML (N) LGG (O) LIHC (P) LUAD (Q) LUSC (R) MESO (S) OV (T) PAAD (U) PCPG (V) PRAD (W) READ (X) SARC (Y) SKCM (Z) STAD (AA) TGCT (BB) THCA (CC) THYM (DD) UCEC (EE) UCS (FF) UVM. (JPG 8522 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, HZ., Zhang, MC. & Wu, H. Clinical and Immunological Significance of ANKRD52 in Pan-Cancer. Biochem Genet (2024). https://doi.org/10.1007/s10528-023-10645-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10528-023-10645-w

Keywords

Navigation