Skip to main content

Advertisement

Log in

MiR-181c-5p Regulates Lung Adenocarcinoma Progression via Targeting PRKN

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Accumulating evidence indicates that microRNAs (miRNAs) have a vital effect on lung adenocarcinoma. However, the contributions and possible mechanisms of miR-181c-5p to lung adenocarcinoma remain largely unclear. Our objective is to clarify the potential mechanism by which miR-181c-5p regulates lung adenocarcinoma progression. RT-qPCR was performed to determine the levels of miR-181c-5p in lung adenocarcinoma tissues and cells. CCK-8 and Transwell assays were conducted to evaluate the viability, migration, and invasion of H460 cells, respectively. The putative target association between miR-181c-5p and the Parkin gene (PRKN) was predicted using miRDB and confirmed by dual-luciferase reporter assay. MiR-181c-5p expression was found to be up-regulated in both lung adenocarcinoma tissues and cells. Suppression of miR-181c-5p resulted in the inhibition of viability, migration, and invasion in lung adenocarcinoma cells. PRKN level was negatively related to miR-181c-5p expression and mediated with the miR-181c-5p’s functions on lung adenocarcinoma progression. MiR-181c-5p regulates lung adenocarcinoma progression via targeting PRKN, indicating miR-181c-5p is expected to be a diagnostic and predictive marker for lung adenocarcinoma, providing new insights into the development of treatment strategies for lung adenocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  • Araya J, Tsubouchi K, Sato N, Ito S, Minagawa S, Hara H et al (2019) PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. Autophagy 15(3):510–526

    Article  CAS  PubMed  Google Scholar 

  • Azizi Dargahlou S, Iriti M, Pouresmaeil M, Goh LPW (2023) MicroRNAs; their therapeutic and biomarker properties. Cell Mol Biomed 3(2):73–88

    Article  Google Scholar 

  • Bade BC, Dela Cruz CS (2020) Lung cancer 2020: epidemiology, etiology, and prevention. Clin Chest Med 41(1):1–24

    Article  PubMed  Google Scholar 

  • Beer DG, Kardia SL, Huang CC, Giordano TJ, Levin AM, Misek DE et al (2002) Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med 8(8):816–824

    Article  CAS  PubMed  Google Scholar 

  • Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res. https://doi.org/10.1093/nar/gkm995

    Article  PubMed  Google Scholar 

  • Chen Z, Teng X, Zhang J, Huang K, Shen Q, Cao H et al (2019a) Molecular features of lung adenocarcinoma in young patients. BMC Cancer 19(1):777

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Chen HN, Wang K, Zhang L, Huang Z, Liu J et al (2019b) Ketoconazole exacerbates mitophagy to induce apoptosis by downregulating cyclooxygenase-2 in hepatocellular carcinoma. J Hepatol 70(1):66–77

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Zhang W, Shen L, Kadier A, Huang J, Wang R et al (2020) Downregulation of long noncoding RNA LUCAT1 suppresses the migration and invasion of bladder cancer by targeting miR-181c-5p. Biomed Res Int 2020:4817608

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen C, Tao Z, Li Y, Li J, Xu Y (2022) MicroRNA214 expression inhibits HCC cell proliferation through PTK2b/ Pyk2. Cell Mol Biol (noisy-Le-Grand) 68(1):20–25

    Article  PubMed  Google Scholar 

  • Costa DK, Huckestein BR, Edmunds LR, Petersen MC, Nasiri A, Butrico GM et al (2016) Reduced intestinal lipid absorption and body weight-independent improvements in insulin sensitivity in high-fat diet-fed Park2 knockout mice. Am J Physiol Endocrinol Metab 311(1):E105–E116

    Article  PubMed  PubMed Central  Google Scholar 

  • Denisenko TV, Budkevich IN, Zhivotovsky B (2018) Cell death-based treatment of lung adenocarcinoma. Cell Death Dis 9(2):117

    Article  PubMed  PubMed Central  Google Scholar 

  • Edmunds LR, Huckestein BR, Kahn M, Zhang D, Chu Y, Zhang Y et al (2019) Hepatic insulin sensitivity is improved in high-fat diet-fed Park2 knockout mice in association with increased hepatic AMPK activation and reduced steatosis. Physiol Rep 7(21):e14281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edmunds LR, Xie B, Mills AM, Huckestein BR, Undamatla R, Murali A et al (2020) Liver-specific Prkn knockout mice are more susceptible to diet-induced hepatic steatosis and insulin resistance. Mol Metab 41:101051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan J, Dai X, Wang Z, Huang B, Shi H, Luo D et al (2019) Concomitant EGFR mutation and EML4-ALK rearrangement in lung adenocarcinoma is more frequent in multifocal lesions. Clin Lung Cancer 20(4):e517–e530

    Article  CAS  PubMed  Google Scholar 

  • Gao ZQ, Wang JF, Chen DH, Ma XS, Yang W, Zhe T et al (2018) Long non-coding RNA GAS5 antagonizes the chemoresistance of pancreatic cancer cells through down-regulation of miR-181c-5p. Biomed Pharmacother 97:809–817

    Article  CAS  PubMed  Google Scholar 

  • Ge L, Cai Y, Ying F, Liu H, Zhang D, He Y et al (2019) miR-181c-5p exacerbates hypoxia/reoxygenation-induced cardiomyocyte apoptosis via targeting PTPN4. Oxid Med Cell Longev 2019:1957920

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasan A, Ali M, Redha AA (2022) Investigating the structure and function of long non-coding RNA (LncRNA) and its role in cancer. Cell Mol Biomed 2:245–253

    Article  Google Scholar 

  • Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A Compr Rev EMBO Mol Med 4(3):143–159

    Article  CAS  Google Scholar 

  • Klinge CM (2018) Non-coding RNAs in breast cancer: intracellular and intercellular communication. Noncoding RNA. https://doi.org/10.3390/ncrna4040040

    Article  PubMed  PubMed Central  Google Scholar 

  • Kohno T, Ichikawa H, Totoki Y, Yasuda K, Hiramoto M, Nammo T et al (2012) KIF5B-RET fusions in lung adenocarcinoma. Nat Med 18(3):375–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610

    Article  CAS  PubMed  Google Scholar 

  • Li N, Cheng C, Wang T (2020) MiR-181c-5p mitigates tumorigenesis in cervical squamous cell carcinoma via targeting glycogen synthase kinase 3beta interaction protein (GSKIP). Onco Targets Ther 13:4495–4505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Su S, Ye D, Yu Z, Lu W, Liu L (2022) Hsa_circ_0020850 promotes the malignant behaviors of lung adenocarcinoma by regulating miR-326/BECN1 axis. World J Surg Oncol 20(1):13

    Article  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Naghmana K, Othman Al S, Haider Majid H, Z., Ali M., Mohammad H. (2023) Comprehensive analysis of microRNA (miRNA) in cancer cells. Cell Mol Biomed 3:89–97

    Article  Google Scholar 

  • Niemira M, Collin F, Szalkowska A, Bielska A, Chwialkowska K, Reszec J et al (2019) Molecular signature of subtypes of non-small-cell lung cancer by large-scale transcriptional profiling: identification of key modules and genes by weighted gene co-expression network analysis (WGCNA). Cancers. https://doi.org/10.3390/cancers12010037)

    Article  PubMed  PubMed Central  Google Scholar 

  • Niu K, Fang H, Chen Z, Zhu Y, Tan Q, Wei D et al (2020) USP33 deubiquitinates PRKN/parkin and antagonizes its role in mitophagy. Autophagy 16(4):724–734

    Article  CAS  PubMed  Google Scholar 

  • Ozdemir BC, Dotto GP (2017) Racial differences in cancer susceptibility and survival: more than the color of the skin? Trends Cancer 3(3):181–197

    Article  PubMed  PubMed Central  Google Scholar 

  • Rah A, Ar M, Hk A (2021) Molecular and clinical analysis of genes involved in gastric cancer. Cell Mol Biomed 1:138–146

    Article  Google Scholar 

  • Shen X, Li Y, Sun G, Guo D, Bai X (2018) miR-181c-3p and -5p promotes high-glucose-induced dysfunction in human umbilical vein endothelial cells by regulating leukemia inhibitory factor. Int J Biol Macromol 115:509–517

    Article  CAS  PubMed  Google Scholar 

  • Skoulidis F, Goldberg ME, Greenawalt DM, Hellmann MD, Awad MM, Gainor JF et al (2018) STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov 8(7):822–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sliter DA, Martinez J, Hao L, Chen X, Sun N, Fischer TD et al (2018) Parkin and PINK1 mitigate STING-induced inflammation. Nature 561(7722):258–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Q, Shang J, Yang Z, Zhang L, Zhang C, Chen J et al (2019) Identification of an immune signature predicting prognosis risk of patients in lung adenocarcinoma. J Transl Med 17(1):70

    Article  PubMed  PubMed Central  Google Scholar 

  • Tahmasebi E, Kaboudanian Ardestani A, Madihi N, Abbasiparashkouh Z, Abbasi Maleki S, Yazdanian M et al (2022) Evaluation of the current MicroRNAs expression levels as potential biomarkers in oral squamous cell carcinoma: evaluation of the current micrornas in OSCC. Cell Mol Biol (noisy-Le-Grand) 68(10):193–198

    Article  PubMed  Google Scholar 

  • Wei W, Zhao X, Liu J, Zhang Z (2021) Downregulation of LINC00665 suppresses the progression of lung adenocarcinoma via regulating miR-181c-5p/ZIC2 axis. Aging (albany NY) 13(13):17499–17515

    Article  CAS  PubMed  Google Scholar 

  • Yan C, Gong L, Chen L, Xu M, Abou-Hamdan H, Tang M et al (2020) PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis. Autophagy 16(3):419–434

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zhang Z, Yu Z (2019) Identification of a novel glycolysis-related gene signature for predicting metastasis and survival in patients with lung adenocarcinoma. J Transl Med 17(1):423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhi W, Feng Q, Mingzhu Z (2022) MiR-140 targets Wnt1 to inhibit the proliferation and enhance drug sensitivity in osteosarcoma cells. Cell Mol Biol (noisy-Le-Grand) 68(1):140–146

    Article  PubMed  Google Scholar 

  • Zhu X, Lu X (2019) MiR-423-5p inhibition alleviates cardiomyocyte apoptosis and mitochondrial dysfunction caused by hypoxia/reoxygenation through activation of the wnt/beta-catenin signaling pathway via targeting MYBL2. J Cell Physiol 234(12):22034–22043

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We deeply appreciate the support of all participants.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

JW and YH conceived and designed the study. ML and MW performed the literature search and data extraction. JY and DL analyzed the data. JW drafted the manuscript. YH finalized the manuscript. All the authors participated in the experiments and read and approved the final manuscript.

Corresponding author

Correspondence to Yunxia Hao.

Ethics declarations

Conflicts of interest

The authors state that there is no conflict of interest.

Ethical Approval

The experimental protocol was established, according to the ethical guidelines of the Helsinki Declaration and was approved by the Ethics Committee of the Yantai Laiyang Central Hospital.

Informed Consent

The analysis was performed according to the principles of the Helsinki Declaration. Written informed consent was obtained from all patients.

Consent for Publication

The authors give consent to the publication in the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Li, M., Wang, M. et al. MiR-181c-5p Regulates Lung Adenocarcinoma Progression via Targeting PRKN. Biochem Genet 62, 1103–1114 (2024). https://doi.org/10.1007/s10528-023-10459-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-023-10459-w

Keywords

Navigation