Skip to main content
Log in

Regression of Walker 256 Carcinosarcoma in Vasopressin-Deficient Brattleboro Rats Is Accompanied by a Changed Laminin Pattern

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Walker 256 carcinosarcoma is a transplantable model of rat carcinoma that originally appeared spontaneously in mammary glands. The growth rate of Walker 256 carcinosarcoma in vasopressin-deficient Brattleboro rats is lower than in WAG rats and their congenic hybrids with normal vasopressin levels. Study of tumor proteins detected essential alterations. Tumor regression starting at the 14th day in Brattleboro rats was accompanied by changes in the laminin pattern. At the 21st day, the concentration of α-chains became twice as low, while β-chains of laminin showed a sixfold increase compared to the initial equimolar correlation of bands. Congenic hybrids having one active copy of the vasopressin gene to provide a physiological level of hormone against the genetic background of Brattleboro rats show the same laminin alterations as WAG rats. They demonstrated a similar moderate increase of γ-chains and threefold growth of α- and β-chains of laminin in tumor tissue. It is supposed that vasopressin may be involved in the regulation of relevant local stimuli to trigger renovation of the laminin composition in a course of growing Walker 256 carcinosarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Beck K, Hunter I, Engel J (1990) Structure and function of laminin: anatomy of a multidomain glycoprotein. FASEB J 4(2):148–160

    CAS  PubMed  Google Scholar 

  • Colognato H, Yurchenco P (2000) Form and function: the laminin family of heterotrimers. Dev Dyn 218(2):213–234

    Article  CAS  PubMed  Google Scholar 

  • Florea L, Di Francesco V, Miller J, Turner R, Yao A, Harris M, Walenz B, Mobarry C, Merkulov GV, Charlab R, Dew I, Deng Z, Istrail S, Li P, Sutton G (2005) Gene and alternative splicing annotation with AIR. Genome Res 15(1):54–66

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta V (1997) Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277(5323):225–228

    Article  CAS  PubMed  Google Scholar 

  • Hasler U, Mordasini D, Bens M, Bianchi M, Cluzeaud F, Rousselot M, Vandewalle A, Feraille E, Martin PY (2002) Long term regulation of aquaporin-2 expression in vasopressin-responsive renal collecting duct principal cells. J Biol Chem 277(12):10379–10386

    Article  CAS  PubMed  Google Scholar 

  • Iannucci NB, Ripoll GV, Garona J, Cascone O, Ciccia GN, Gomez DE, Alonso DF (2011) Antiproliferative effect of 1-deamino-8-d-arginine vasopressin analogs on human breast cancer cells. Future Med Chem 3(16):1987–1993

    Article  CAS  PubMed  Google Scholar 

  • Keegan BP, Akerman BL, Péqueux C, North WG (2006) Provasopressin expression by breast cancer cells: implications for growth and novel treatment strategies. Breast Cancer Res Treat 95(3):265–277

    Article  CAS  PubMed  Google Scholar 

  • Khegai II (2003) Phenotypic expression of the mutant gene diabetes insipidus in rats and criteria of genotyping by phenotype. Rus J Genet 39(1):70–74

    Article  CAS  Google Scholar 

  • Khegay II, Popova NA, Ivanova LN (2010) Reduced Walker 256 carcinosarcoma growth in vasopressin-deficient Brattleboro rats. Tumor Biol 31(6):569–573

    Article  CAS  Google Scholar 

  • Koshikawaa N, Giannellia G, Cirullic V, Miyazakib K, Quarantaa V (2000) Role of cell surface metalloprotease Mt1-Mmp in epithelial cell migration over laminin-5. J Cell Biol 148(3):615–624

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  • Miller RL, Sandoval PC, Pisitkun T, Knepper MA, Hoffert JD (2013) Vasopressin inhibits apoptosis in renal collecting duct cells. Am J Physiol 304(2):F177–F188

    CAS  Google Scholar 

  • North WG, Fay MJ, Longo KA, Du J (1998) Expression of all known vasopressin receptor subtypes by small cell tumors implies a multifaceted role for this neuropeptide. Cancer Res 58(9):1866–1871

    CAS  PubMed  Google Scholar 

  • North WG, Fay MJ, Du J (1999) MCF-7 breast cancer cells express normal forms of all vasopressin receptors plus an abnormal V2R. Peptides 20(7):837–842

    Article  CAS  PubMed  Google Scholar 

  • Pequeux C, Keegan BP, Hagelstein MT, Geenen V, Legros JJ, North WG (2004) Oxytocin- and vasopressin-induced growth of human small-cell lung cancer is mediated by the mitogen-activated protein kinase pathway. Endocr Relat Cancer 11(4):871–885

    Article  CAS  PubMed  Google Scholar 

  • Ripoll GV, Garona J, Pifano M, Farina HG, Gomez DE, Alonso DF (2013) Reduction of tumor angiogenesis induced by desmopressin in a breast cancer model. Breast Cancer Res Treat 142(1):9–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sasaki T, Takagi J, Guidici C, Yamada Y, Arikawa-Hirasawa E, Deutzmann R, Timpl R, Sonnenberg A, Bachinger HP, Tonge D (2010) Laminin-121—recombinant expression and interactions with integrins. Matrix Biol 29(6):484–493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmale H, Richter D (1984) Single base deletion in the vasopressin gene is the cause of diabetes insipidus in Brattleboro rats. Nature 308(5961):705–709

    Article  CAS  PubMed  Google Scholar 

  • Siqueira AS, Gama-de-Souza LN, Arnaud MV, Pinheiro JJ, Jaeger RG (2010) Laminin-derived peptide AG73 regulates migration, invasion, and protease activity of human oral squamous cell carcinoma cells through syndecan-1 and beta1 integrin. Tumor Biol 31(1):46–58

    Article  CAS  Google Scholar 

  • Smit WM, Ruyter JH, van Wijk HF (1960) A new cryoscopic micro-method for the determination of molecular weights. Anal Chim Acta 22(1):8–16

    Article  CAS  Google Scholar 

  • Stewart HL, Snell KC, Dunham LJ, Schlyen SM (1959) Atlas of tumor pathology section XII. Air Force Institute of Pathology, Washington, DC, pp 216–271

    Google Scholar 

  • Tayek JA, Istfan NW, Jones CT, Hamawy KJ, Bistrian BR, Blackburn GL (1986) Influence of the Walker 256 carcinosarcoma on muscle, tumor, and whole-body protein synthesis and growth rate in the cancer-bearing rat. Cancer Res 46(11):5649–5654

    CAS  PubMed  Google Scholar 

  • Timpl R, Rohde H, Robey PG, Rennard SI, Foidart J-M, Martin GR (1979) Laminin-A glycoprotein from basement membranes. J Biol Chem 254(19):9933–9937

    CAS  PubMed  Google Scholar 

  • Yasui M, Zelenin SM, Celsi G, Aperia A (1997) Adenylate cyclase-coupled vasopressin receptor activates AQP2 promoter via a dual effect on CRE and AR1 elements. Am J Physiol 272(4):F443–F450

    CAS  PubMed  Google Scholar 

  • Yurchenco PD, Cheng YS (1993) Self-assembly and calcium-binding sites in laminin. A three-arm interaction model. J Biol Chem 268(23):17286–17299

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Russian Foundation for Basic Research, grant 12-04-00205, to Igor Khegay and Budget Project no. VI.53.2.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor I. Khegay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khegay, I.I., Ivanova, L.N. Regression of Walker 256 Carcinosarcoma in Vasopressin-Deficient Brattleboro Rats Is Accompanied by a Changed Laminin Pattern. Biochem Genet 53, 1–7 (2015). https://doi.org/10.1007/s10528-015-9665-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-015-9665-1

Keywords

Navigation