Skip to main content
Log in

A structural model of glucose regulation for building prognostic algorithms for controlling insulin therapy

  • Published:
Biomedical Engineering Aims and scope

Abstract

This work discusses the physiological processes influencing the dynamics of blood glucose concentration in patients with diabetes mellitus and approaches to mathematical modeling of blood glucose metabolism are proposed to build predictive models as required for automating insulin therapy. Insulin-dependent and non-insulin-dependent processes occurring in the liver, kidneys, and other organs and tissues, the hormones regulating these processes, and enzymes modulating the rates of these processes are considered. A unified scheme is presented which systematizes the interaction of these substances in various processes with indications of localizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Karpelyev VA, Filippov Y, Averin AV et al (2018) Development and testing of the operation of a PID controller for an artificial pancreas with intraperitoneal insulin administration. Sakhar Diabet 1(21):58–65

    Google Scholar 

  2. Boughton CK, Hovorka R (2019) Advances in artificial pancreas systems. Sci Transl Med 11(484):eaaw4949

    Article  PubMed  Google Scholar 

  3. Man DC, Camilleri M, Cobelli C (2006) A system model of oral glucose absorption: validation on gold standard data. IEEE Trans Biomed Eng 53(12):2472–2478

    Article  PubMed  Google Scholar 

  4. Man DC, Rizza RA, Cobelli C (2007) Meal simulation model of the glucose-insulin system. IEEE Trans Biomed Eng 54(10):1740–1749

    Article  PubMed  Google Scholar 

  5. Man DC, Micheletto F, Lv D, Breton M, Kovatchev B, Cobelli C (2014) The UVA/PADOVA type 1 diabetes simulator: new features. J Diabetes Sci Technol 8(1):26–34

    Article  PubMed  PubMed Central  Google Scholar 

  6. Visentin R, Campos-Náñez E, Schiavon M, Lv D, Vettoretti M, Breton M, Kovatchev BP, Man DC, Cobelli C (2018) The UVA/Padova type 1 diabetes simulator goes from single meal to single day. J Diabetes Sci Technol 12(2):273–281

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kraegen EW, Chisholm DJ (1984) Insulin responses to varying profiles of subcutaneous insulin infusion: kinetic modelling studies. Diabetologia 26:208–213

    Article  CAS  PubMed  Google Scholar 

  8. Hovorka R, Canonico V, Chassin LJ, Haueter U, Massi-Benedetti M, Orsini Federici M, Pieber TR, Schaller HC, Schaupp L, Vering T, Wilinska ME (2004) Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol Meas 25(4):905

    Article  PubMed  Google Scholar 

  9. Hovorka R (2006) Continuous glucose monitoring and closed-loop systems. Diabet Med 23(1):1–12

    Article  CAS  PubMed  Google Scholar 

  10. Yamamoto Noguchi CC, Furutani E, Sumi S (2014) Mathematical model of glucose-insulin metabolism in type 1 diabetes including digestion and absorption of carbohydrates. Sice J Control Meas System Integr 7(6):314–320

    Article  Google Scholar 

  11. Yamamoto Noguchi CC, Hashimoto S, Furutani E, Sumi S (2016) Model of gut absorption from carbohydrates with maximum rate of exogenous glucose appearance in type 1 diabetes. SICE J Control Meas System Integr 9(5):201–206

    Article  Google Scholar 

  12. Nedosugova LV (2021) The role of the endocrine system in maintaining glucose homeostasis in health and pathology. Ross Med Zh Meditsinskoe Obozrenie 5(9):586

    Google Scholar 

  13. Khan A, Pessin J (2002) Insulin regulation of glucose uptake: a complex interplay of intracellular signalling pathways. Diabetologia 45:1475–1483

    Article  CAS  PubMed  Google Scholar 

  14. Mergenthaler P et al (2013) Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 36(10):587–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dimitriadis GD et al (2021) Regulation of postabsorptive and postprandial glucose metabolism by insulin-dependent and insulin-independent mechanisms: An integrative approach. Nutrients 13(1):159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu W, Hsin CC, Tang F (2009) A molecular mathematical model of glucose mobilization and uptake. Math Biosci 221(2):121–129

    Article  CAS  PubMed  Google Scholar 

  17. Garg SS, Gupta J (2022) Polyol pathway and redox balance in diabetes. Pharmacol Res 182:106326

    Article  CAS  PubMed  Google Scholar 

  18. Matschinsky FM (2009) Assessing the potential of glucokinase activators in diabetes therapy. Nat Rev Drug Discov 8(5):399–416

    Article  CAS  PubMed  Google Scholar 

  19. Chandel NS (2021) Glycolysis. Cold Spring Harb Perspect Biol 13(5):a40535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dunlop M (2000) Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney Int 58:S3–S12

    Article  Google Scholar 

  21. Gurung P, Zubair M, Jialal I (2023) Plasma Glucose. StatPearls Publishing, Treasure Island

    Google Scholar 

  22. Paredes-Flores MA, Mohiuddin SS (2022) Biochemistry, Glycogenolysis. StatPearls Publishing, Treasure Island

    Google Scholar 

  23. Lema-Pérez L (2021) Main organs involved in glucose metabolism. In: Sugar Intake—risks and Benefits and the Global Diabetes Epidemic. InTechOpen,

    Google Scholar 

Download references

Funding

This study was performed with financial support from the Russian Science Foundation (Agreement No. 23–24–00461 dated January 19, 2023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to É. I. Strukova.

Additional information

Translated from Meditsinskaya Tekhnika, Vol. 58, No. 1, pp. 44–48, January-February, 2024.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Original article submitted December 7, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strukova, É.I., Pozhar, K.V. A structural model of glucose regulation for building prognostic algorithms for controlling insulin therapy. Biomed Eng (2024). https://doi.org/10.1007/s10527-024-10367-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10527-024-10367-2

Navigation