Skip to main content

Advertisement

Log in

In Vitro Investigation of Dental Enamel by Shift Interferometry

  • Published:
Biomedical Engineering Aims and scope

This study addresses investigations of dental tissue surfaces by in vitro shift interferometry. This work is relevant because use of this device for measuring the surface of dental enamel has high precision — to tenths of micrometers. The operation of a functional interferometer system is described. The criteria for adjustment of the device are given. Experimental results from determination of the surface roughness of a second molar treated with Tokuyama Bond Force II and in the natural state are presented. Measurement error of 0.1 μm was obtained for the treated sample, compared with 0.25 μm for the untreated sample. The measurement error due to the need to rotate the radiation polarization plane using a half-wave plate in one channel of the shift interferometer was estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Born, M. and Wolf, E., Principles of Optics [Russian translation], Nauka, Moscow (1970).

    Google Scholar 

  2. Caulfield, G. (ed.) Optical Holography, Vol. 1 [Russian translation], Mir, Moscow (1982).

    Google Scholar 

  3. Landsberg, G. S., Optics [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  4. Afanas’ev, V. A., Optical Measurements [in Russian], Nedra, Moscow (1968).

    Google Scholar 

  5. Hausler, G. and Lindner, M. W., “Coherence radar and spectral radar – New tools for dermatological diagnosis,” F. Biomed. Opt., 3, No. 1, 21-31 (1998).

    Article  Google Scholar 

  6. Bol’shakov, O. P., Kotov, I. R., and Khopov, V. V., “A system for measuring surface profile and elasticity of skin,” Biomed. Eng., 31, 285-288 (1997).

    Article  Google Scholar 

  7. Majorov, E. E. and Prokopenko, V. T., “A limited-coherence inter- ferometer system for examination of biological objects,” Biomed. Eng., 46, 109-111 (2012).

    Article  Google Scholar 

  8. Zakhar’evskii, A. N., Interferometers [in Russian], Oborongiz, Moscow (1952).

    Google Scholar 

  9. Maiorov, E. E., Prokopenko, V. T., Mashek, A. C., Tsygankova, G. A., Kurlov, A. V., Khokhlova, M. V., Kirik, D. I., and Kapralov, D. D., “Experimental study of metrological characteristics of the automated interferometric system for measuring the surface shape of diffusely reflecting objects,” Meas. Tech., 60, No. 10, 1016-1021 (2017).

    Article  Google Scholar 

  10. Kreopalova, G. V., Lazareva, N. L., and Puryaev, D. T., Optical Measurements [in Russian], Mashinostroenie, Moscow (1987).

    Google Scholar 

  11. Maiorov, E. E., Prokopenko, V. T., and Ushveridze, L. A., “Calculation of scanning parameters for an interferometric system monitoring the shapes of diffusely reflecting objects,” Pribory, No. 7, 23-25 (2012).

    Google Scholar 

  12. Maiorov, E. E. and Prokopenko, V. T., Interferometry of Diffusely Reflecting Objects [in Russian], NIU ITMO, St. Petersburg (2014).

    Google Scholar 

  13. Malacara, D., Optical Shop Testing [Russian translation], Mashinostroenie, Moscow (1985).

    Google Scholar 

  14. Maiorov, E. E., Prokopenko, V. T., and Ushveridze, L., A., “A system for the coherent processing of specklegrams for dental tissue surface examination,” Biomed. Eng., 47, 304-306 (2014).

    Article  Google Scholar 

  15. Maiorov, E. E., Mashek, A. Ch., Udakhina, S. V., Tsygankova, G. A., Khaidarov, G. G., and Chernyak, T. A., “Development of a computerized interfrence system for monitoring nonsmooth surfaces,” Pribory, No. 11, 26-31 (2005).

  16. Maiorov, E. E., Shalamai, L. I., Popova, N. E., Kotskovich, A. V., Dagaev, A. V., Khaidarov, G. G., Khaidarov, A. G., and Pisareva, E. A., “Investigation of early caries by coherence scanning inter-ferometry in low-coherence light,” Prib. Syst. Uprav. Kontr. Diagn., No. 11, 25-30 (2018).

  17. Maiorov, E. E., Mashek, A. Ch., Tsygankova, G. A., Polikarpova, A. A., Konstantinova, A. A., Khokhlova, M. V., “Studies of a Michelson interferometer with a coherence-limited irradiation source for monitoring diffusely reflecting objects,” Izv. TGU. Tekh. Nauki, No. 4, 387-397 (2018).

  18. Maiorov, E. E., Popova, N. E., Shalamai, L. I., Tsygankova, G. A., Chernyak, T. A., Pushkina, V. P., Pisareva, E. A., and Dagaev, A. V., “Digital holographic interferometry as a high-precision tool in dentistry,” Izv. TGU. Tekh. Nauki, No. 10, 249-256 (2018).

  19. Maiorov, E. E., Prokopenko, V. T., Shalamai, L. I., Khokhlova, M. V., Turovskaya, M. S., Ushakova, A. S., and Dagaev, A. V., “Use of scanning interferometry in low-coherence light for in vivo measurement of demineralization of subgingival areas of enamel,” Izv. Vyssh. Ucheb. Zaved. Priborostr., 62, No. 2, 128-135 (2019).

    Google Scholar 

  20. Prokopenko, V. T., Maiorov, E. E., Shalamai, L. I., Khokhlova, M. V., Katunin, B. D., and Kapralov, D. D., “In vivo studies of mineralized areas of subgingival enamel using an interferometric device,” Izv. Vyssh. Ucheb. Zaved. Priborostr., 62, No. 7, 643-649 (2019).

    Google Scholar 

  21. Maiorov, E. E., Turovskaya, M. S., Popova, N. E., Chernyak, T. A., Pushkina, V. P., Dagaev, A. V., Abramyan, V. K., and Zaitsev, Yu. E., “Studies of speckle-holographic interference systems for speckle- gram processing for monitoring biological objects,” Nauch. Ved. BelGU. Techn. Nauki, 51, No. 2, 323-330 (2019).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Maiorov.

Additional information

Translated from Meditsinskaya Tekhnika, Vol. 54, No. 4, Jul.-Aug., 2020, pp. 39-42.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiorov, E.E., Shalamai, L.I., Chernyak, T.A. et al. In Vitro Investigation of Dental Enamel by Shift Interferometry. Biomed Eng 54, 280–284 (2020). https://doi.org/10.1007/s10527-020-10022-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10527-020-10022-6

Navigation