Skip to main content
Log in

The Effect of Rotor Geometry on the H−Q Curves of the Sputnik Implantable Pediatric Rotary Blood Pump

  • Published:
Biomedical Engineering Aims and scope

In this work, the effect of rotor geometry on the H−Q curves of the Sputnik implantable pediatric rotary blood pump was studied. Load sensitivity was calculated for different input angles of the pump impeller and diffuser blades. Hydraulic efficiency and shear stress were determined for each modification of the pump design. The study showed that variation of the input angles of the impeller and diffuser blades had a significant effect on the load sensitivity of the pump. An almost twofold increase in the load sensitivity was achieved (from 0.03420 to 0.05957 L·min−1·mm Hg−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giridharan G. A., Lee T. J., Ising M. et al., “Miniaturization of mechanical circulatory support systems,” Artif. Organs, 36, No. 8, 731-758 (2012).

    Article  Google Scholar 

  2. Petukhov D. S., Selishchev S. V., and Telyshev D. V., “Development of left ventricular assist devices as the most effective method of treatment of acute cardiac failure,” Med. Tekh., No. 6, 37-39 (2014).

  3. Kyo S., Ventricular Assist Devices in Advanced-Stage Heart Failure, Springer Japan (2014).

  4. Rose E. A., Gelijns A. C., Moskowitz A. J. et al.. “Long-term use of a left ventricular assist device for end-stage heart failure,” N. Eng. J. Med., 345, No. 20, 1435-1443 (2001).

    Article  Google Scholar 

  5. Kirklin J. K., Naftel D. C., Pagani F. D. et al., “Sixth INTERMACS annual report: A 10,000-patient database,” J. Heart Lung Transplant., 33, No. 6, 555-564 (2014).

    Article  Google Scholar 

  6. Cheung A., Chorpenning K., Tamez D. et al., Innovations (Philadelphia, Pa.), 10, No. 3, 151-156 (2015).

  7. Stepanoff A. J., Centrifugal and Axial Flow Pumps, J. Wiley (1948).

  8. Frazier O., Khalil H. A., Benkowski R. J., and Cohn W. E., “Optimization of axial-pump pressure sensitivity for a continuous-flow total artificial heart,” J. Heart Lung Transplant., 29, No. 6, 687-691 (2010).

    Article  Google Scholar 

  9. Salamonsen R. F., Mason D. G., and Ayre P. J., “Response of rotary blood pumps to changes in preload and afterload at a fixed speed setting are unphysiological when compared with the natural heart,” Artif. Organs, 35, No. 3, 47-53 (2011).

    Article  Google Scholar 

  10. Fukamachi K., Shiose A., Massiello A. et al., “Preload sensitivity in cardiac assist devices,”, Ann. Thorac. Surg., 95, No. 1, 373-380 (2013).

    Article  Google Scholar 

  11. Petukhov D. S. and Telyshev D. V., “Analysis of the preload and afterload sensitivity of the Sputnik rotary blood pump,” Med. Tekh., No. 6, 27-30 (2015).

  12. Khalil H. A., Cohn W. E., Metcalfe R. W., and Frazier O. H., “Preload sensitivity of the Jarvik 2000 and HeartMate II left ventricular assist devices,” Am. Soc. Artif. Organs J., 54, No. 3, 245-248 (2008).

    Article  Google Scholar 

  13. Selishchev S. and Telyshev D., “Ventricular assist device Sputnik: Description, technical features and characteristics,” Trends Biomat. Artif. Organs, 29, No. 3, 207-210 (2015).

    Google Scholar 

  14. Selishchev S. V. and Telyshev D. V., “Optimisation of the Sputnik- VAD design,” Int. J. Artif. Organs, 39, No. 8, 407-414 (2016).

    Article  Google Scholar 

  15. Menter F. R., “Two-equation eddy-viscosity turbulence models for engineering applications,” Amer. Inst. Aeronautics Astronautics J., 32, No. 8, 1598-1605 (1994).

    Article  Google Scholar 

  16. https://uiuc-cse.github.io/me498cm-fa15/lessons/fluent/refs/ANSYS%20Fluent%20Theory%20Guide.pdf

  17. Fraser K. H., Zhang T., Taskin M. E. et al., “A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: Shear stress, exposure time and hemolysis index”, J. Biomech. Eng., 134, No. 8 (2012).

  18. Thamsen B., Blümel B., Schaller J. et al., “Numerical analysis of blood damage potential of the HeartMate II and HeartWare HVAD rotary blood pumps,” Artif. Organs, 39, No. 8, 651-659 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Telyshev.

Additional information

Translated from Meditsinskaya Tekhnika, Vol. 50, No. 6, Nov.-Dec., 2016, pp. 45-49.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telyshev, D.V., Denisov, M.V. & Selishchev, S.V. The Effect of Rotor Geometry on the H−Q Curves of the Sputnik Implantable Pediatric Rotary Blood Pump. Biomed Eng 50, 420–424 (2017). https://doi.org/10.1007/s10527-017-9669-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10527-017-9669-8

Navigation